「進入大AI時代,機器將協助人類化繁為簡、處理人力不可及之工作」,憑藉著長達20年文字探勘(Text Mining)的經驗,藍星球資訊公司總經理宋浩堅信,在「政府開放資料」(Open Data)的趨勢下,公開資料絕對是值得深究的寶藏。透過文字探勘與AI技術,藍星球運用「實告ΣCOUT」構建出龐大企業網絡,協助銀行與招標單位充分了解客戶及供應鏈廠商、有效降低商業往來風險。 根據《2020年中小企業白皮書》統計,2019年臺灣中小企業家數為149萬1,420家,占全體企業97.65%,較2018年增加1.72%,創下近年來最高紀錄。面對眾多的中小型、新創企業,無論是銀行要「認識客戶」 (Know Your Customer,KYC),或是政府招標單位要遴選供應商,都是十分耗時耗力的工作。 「 銀行產出盡職報告平均需花費12小時 「實告」可縮短至1小時 藍星球資訊在針對多家銀行進行實地訪查後,發現以往一家銀行對單一客戶進行盡職調查時,需要先蒐集來自司法院、經濟部工商登記、國貿局、媒體新聞等數十個網站之相關資料,再進行整理與審閱,直到產出一份查核報告,總共需耗費約12小時的人力成本。然而,透過藍星球研發的「實告ΣCOUT」商業履歷查詢系統,運用自動化技術,即能一鍵完成所有查核事項,毫無缺漏,並將一份報告完成時間從12小時收斂至1小時,省下超過80%的時間成本。 ▲藍星球團隊致力於為客戶節省科技能夠代勞的瑣碎工夫。 作為台灣大學正式技轉的資訊公司,藍星球前身為台大資工所研發團隊,自1996年起,為了保存年久珍貴的檔案,國家政府與台灣大學合作執行「數位典藏國家計畫」,透過文本分析技術,將各類存放在圖書館、博物館與美術館等地的館藏品數位化,這段時間的研究淬鍊,也奠定了藍星球紮實的技術根基。 「實告ΣCOUT」收錄的公開發行資料,從小吃攤、工作室、中小企業、大型企業,甚至已經結束營運、完成清算的公司在內,共計超過300萬筆。加上司法院1,500萬筆裁判書,以及各式新聞、論壇、社群等資訊,總計超過上億筆數據存於資料庫中。 宋浩指出,由於藍星球是以中文文字探勘起家,除了結構化資料外,團隊更擅長非結構性資料,例如新聞報導、裁判書等,若要精準分析具有相當技術門檻,因此他們佔有競爭優勢,後進者要追趕上並不容易。尤其是法院的判決文書一旦涉及到企業、貿易往來,其中時常隱藏著龐大的商業脈絡,需要運用深度學習與AI演算法,將其化成結構化資料,才能進一步抽絲剝繭找出潛藏的關係鏈結。 商業風險無處不在 「實告」自動化AI演算大幅降低風險 「實告ΣCOUT」的客群主要分為三類,一類為需要對客戶進行盡職調查與徵信調查的金融業;二類是時常對外招標的政府單位;三類則是一般民間企業的採購單位。宋浩表示,「商業上的合作風險無所不在,遇上中小企業時風險尤其大」,不管國內外,中小企業皆數量龐大、資訊又不易蒐集,再加上國際對於洗錢防制與打擊資恐(AML/CFT)要求均有一定規範,無論是融資、借貸,銀行便需透過像「實告」這樣的系統對往來客戶進行詳盡的查核。 ▲透過獨家語意分析技術,萃取判決書的關鍵詞彙,揭露企業風險事項。 此外,政府採購部門一天的招標案可高達上百件;一般企業在挑選採購廠商時前置作業不勝枚舉,若要仰賴人工查核,可說是曠日費時。若能透過自動化系統,將投標、採購廠商的「身家」詳細調查一遍,將能降低未來承攬後未能履約、出工安意外等風險,更能加強提示是否為優良廠商或拒絕往來廠商。 運用AI智能演算法,藍星球獨家開發「商業網絡圖」及「股權結構表」,有助於揭開企業背後錯綜複雜的網絡面紗。宋浩進一步指出,以遠東集團為例,以往要做交叉持股分析,銀行盡職查核人員得徒手畫出200-300條關係路線,但藉由「實告」,只需短短幾秒,複雜的交叉持股網絡即可一目了然。 ▲透過資料盤點、蒐集、清洗的正規化流程,從中提取關鍵資訊建構商業網絡。 再如證券市場上有許多投資標的,投資人若不了解企業,投資風險即相當高,透過「實告」的商業網絡圖,卻可嗅出商業上的蛛絲馬跡,如該企業是否為人頭復活的「空殼公司」,更甚,還能挖掘出關係企業背後隱藏的核心人物及最終受益人(UBO)。對於有時負責人、董監事出現同名同姓的情況,宋浩則表示,AI會根據企業活動期間、活動產業的相似性給予不同的權重,權重比例較高,判斷為同一人的可能性也會升高。 臺灣Open Data走在世界前沿 藍星球預計5年內開創新領域與市場 耕耘多年,藍星球資訊現階段可謂台灣文字探勘領域的翹楚。宋浩指出,在前行政院院長張善政擔任政務委員時期,大力推動「政府開放資料」,臺灣的Open Data也因此走在世界的前沿,與英國及日本相當。國內的Open Data資訊多半是文字,歐美國家則為PDF檔或是掃描檔,無法輕易文字化,更難以加值運用。因此,藍星球資訊把握機會,蒐集政府開放資料平臺的數據並加值應用,讓AI結合不同領域的大數據,預計在未來5年內開創新的領域與市場。 在拓展海外市場方面,宋浩透露,過去曾有某外商銀行前來接洽,表示其在全球有多處據點,希望能蒐集全球30個國家的企業資料,如此契機,也讓他起心動念,希望能將藍星球在臺灣的營運服務模式,複製到全球。因此,公司營運的下一階段,即是研究全球可以公開蒐集到的數據,進一步將服務模式推向海外市場,打造國際性的商業實績資料庫。。 自2013年成立以來,藍星球資訊不斷深耕技術,將實驗室的研發成果不斷往商業化路途邁進。宋浩表示,研究室出來的人通常對於研究有其想法與執著,但商業化之後不免必須要妥協於現實情況,他希望10年之後,能將藍星球推向公開發行上市(IPO)之路,帶領團隊成為技術領頭羊,達到成為軟體業「臺灣之光」的終極目標。 ▲藍星球資訊總經理宋浩博士
「進入大AI時代,機器將協助人類化繁為簡、處理人力不可及之工作」,憑藉著長達20年文字探勘(Text Mining)的經驗,藍星球資訊公司總經理宋浩堅信,在「政府開放資料」(Open Data)的趨勢下,公開資料絕對是值得深究的寶藏。透過文字探勘與AI技術,藍星球運用「實告ΣCOUT」構建出龐大企業網絡,協助銀行與招標單位充分了解客戶及供應鏈廠商、有效降低商業往來風險。 根據《2020年中小企業白皮書》統計,2019年臺灣中小企業家數為149萬1,420家,占全體企業97.65%,較2018年增加1.72%,創下近年來最高紀錄。面對眾多的中小型、新創企業,無論是銀行要「認識客戶」 (Know Your Customer,KYC),或是政府招標單位要遴選供應商,都是十分耗時耗力的工作。 「 銀行產出盡職報告平均需花費12小時 「實告」可縮短至1小時 藍星球資訊在針對多家銀行進行實地訪查後,發現以往一家銀行對單一客戶進行盡職調查時,需要先蒐集來自司法院、經濟部工商登記、國貿局、媒體新聞等數十個網站之相關資料,再進行整理與審閱,直到產出一份查核報告,總共需耗費約12小時的人力成本。然而,透過藍星球研發的「實告ΣCOUT」商業履歷查詢系統,運用自動化技術,即能一鍵完成所有查核事項,毫無缺漏,並將一份報告完成時間從12小時收斂至1小時,省下超過80%的時間成本。 ▲藍星球團隊致力於為客戶節省科技能夠代勞的瑣碎工夫。 作為台灣大學正式技轉的資訊公司,藍星球前身為台大資工所研發團隊,自1996年起,為了保存年久珍貴的檔案,國家政府與台灣大學合作執行「數位典藏國家計畫」,透過文本分析技術,將各類存放在圖書館、博物館與美術館等地的館藏品數位化,這段時間的研究淬鍊,也奠定了藍星球紮實的技術根基。 「實告ΣCOUT」收錄的公開發行資料,從小吃攤、工作室、中小企業、大型企業,甚至已經結束營運、完成清算的公司在內,共計超過300萬筆。加上司法院1,500萬筆裁判書,以及各式新聞、論壇、社群等資訊,總計超過上億筆數據存於資料庫中。 宋浩指出,由於藍星球是以中文文字探勘起家,除了結構化資料外,團隊更擅長非結構性資料,例如新聞報導、裁判書等,若要精準分析具有相當技術門檻,因此他們佔有競爭優勢,後進者要追趕上並不容易。尤其是法院的判決文書一旦涉及到企業、貿易往來,其中時常隱藏著龐大的商業脈絡,需要運用深度學習與AI演算法,將其化成結構化資料,才能進一步抽絲剝繭找出潛藏的關係鏈結。 商業風險無處不在 「實告」自動化AI演算大幅降低風險 「實告ΣCOUT」的客群主要分為三類,一類為需要對客戶進行盡職調查與徵信調查的金融業;二類是時常對外招標的政府單位;三類則是一般民間企業的採購單位。宋浩表示,「商業上的合作風險無所不在,遇上中小企業時風險尤其大」,不管國內外,中小企業皆數量龐大、資訊又不易蒐集,再加上國際對於洗錢防制與打擊資恐(AML/CFT)要求均有一定規範,無論是融資、借貸,銀行便需透過像「實告」這樣的系統對往來客戶進行詳盡的查核。 ▲透過獨家語意分析技術,萃取判決書的關鍵詞彙,揭露企業風險事項。 此外,政府採購部門一天的招標案可高達上百件;一般企業在挑選採購廠商時前置作業不勝枚舉,若要仰賴人工查核,可說是曠日費時。若能透過自動化系統,將投標、採購廠商的「身家」詳細調查一遍,將能降低未來承攬後未能履約、出工安意外等風險,更能加強提示是否為優良廠商或拒絕往來廠商。 運用AI智能演算法,藍星球獨家開發「商業網絡圖」及「股權結構表」,有助於揭開企業背後錯綜複雜的網絡面紗。宋浩進一步指出,以遠東集團為例,以往要做交叉持股分析,銀行盡職查核人員得徒手畫出200-300條關係路線,但藉由「實告」,只需短短幾秒,複雜的交叉持股網絡即可一目了然。 ▲透過資料盤點、蒐集、清洗的正規化流程,從中提取關鍵資訊建構商業網絡。 再如證券市場上有許多投資標的,投資人若不了解企業,投資風險即相當高,透過「實告」的商業網絡圖,卻可嗅出商業上的蛛絲馬跡,如該企業是否為人頭復活的「空殼公司」,更甚,還能挖掘出關係企業背後隱藏的核心人物及最終受益人(UBO)。對於有時負責人、董監事出現同名同姓的情況,宋浩則表示,AI會根據企業活動期間、活動產業的相似性給予不同的權重,權重比例較高,判斷為同一人的可能性也會升高。 臺灣Open Data走在世界前沿 藍星球預計5年內開創新領域與市場 耕耘多年,藍星球資訊現階段可謂台灣文字探勘領域的翹楚。宋浩指出,在前行政院院長張善政擔任政務委員時期,大力推動「政府開放資料」,臺灣的Open Data也因此走在世界的前沿,與英國及日本相當。國內的Open Data資訊多半是文字,歐美國家則為PDF檔或是掃描檔,無法輕易文字化,更難以加值運用。因此,藍星球資訊把握機會,蒐集政府開放資料平臺的數據並加值應用,讓AI結合不同領域的大數據,預計在未來5年內開創新的領域與市場。 在拓展海外市場方面,宋浩透露,過去曾有某外商銀行前來接洽,表示其在全球有多處據點,希望能蒐集全球30個國家的企業資料,如此契機,也讓他起心動念,希望能將藍星球在臺灣的營運服務模式,複製到全球。因此,公司營運的下一階段,即是研究全球可以公開蒐集到的數據,進一步將服務模式推向海外市場,打造國際性的商業實績資料庫。。 自2013年成立以來,藍星球資訊不斷深耕技術,將實驗室的研發成果不斷往商業化路途邁進。宋浩表示,研究室出來的人通常對於研究有其想法與執著,但商業化之後不免必須要妥協於現實情況,他希望10年之後,能將藍星球推向公開發行上市(IPO)之路,帶領團隊成為技術領頭羊,達到成為軟體業「臺灣之光」的終極目標。 ▲藍星球資訊總經理宋浩博士