:::

【110年 解決方案】 深耕文字探勘與人工智慧 藍星球資訊一鍵描繪龐大商業網絡

「進入大AI時代,機器將協助人類化繁為簡、處理人力不可及之工作」,憑藉著長達20年文字探勘(Text Mining)的經驗,藍星球資訊公司總經理宋浩堅信,在「政府開放資料」(Open Data)的趨勢下,公開資料絕對是值得深究的寶藏。透過文字探勘與AI技術,藍星球運用「實告ΣCOUT」構建出龐大企業網絡,協助銀行與招標單位充分了解客戶及供應鏈廠商、有效降低商業往來風險。

根據《2020年中小企業白皮書》統計,2019年臺灣中小企業家數為149萬1,420家,占全體企業97.65%,較2018年增加1.72%,創下近年來最高紀錄。面對眾多的中小型、新創企業,無論是銀行要「認識客戶」 (Know Your Customer,KYC),或是政府招標單位要遴選供應商,都是十分耗時耗力的工作。 「

銀行產出盡職報告平均需花費12小時 「實告」可縮短至1小時

藍星球資訊在針對多家銀行進行實地訪查後,發現以往一家銀行對單一客戶進行盡職調查時,需要先蒐集來自司法院、經濟部工商登記、國貿局、媒體新聞等數十個網站之相關資料,再進行整理與審閱,直到產出一份查核報告,總共需耗費約12小時的人力成本。然而,透過藍星球研發的「實告ΣCOUT」商業履歷查詢系統,運用自動化技術,即能一鍵完成所有查核事項,毫無缺漏,並將一份報告完成時間從12小時收斂至1小時,省下超過80%的時間成本。

藍星球團隊致力於為客戶節省科技能夠代勞的瑣碎工夫。

▲藍星球團隊致力於為客戶節省科技能夠代勞的瑣碎工夫。

作為台灣大學正式技轉的資訊公司,藍星球前身為台大資工所研發團隊,自1996年起,為了保存年久珍貴的檔案,國家政府與台灣大學合作執行「數位典藏國家計畫」,透過文本分析技術,將各類存放在圖書館、博物館與美術館等地的館藏品數位化,這段時間的研究淬鍊,也奠定了藍星球紮實的技術根基。 「實告ΣCOUT」收錄的公開發行資料,從小吃攤、工作室、中小企業、大型企業,甚至已經結束營運、完成清算的公司在內,共計超過300萬筆。加上司法院1,500萬筆裁判書,以及各式新聞、論壇、社群等資訊,總計超過上億筆數據存於資料庫中。

宋浩指出,由於藍星球是以中文文字探勘起家,除了結構化資料外,團隊更擅長非結構性資料,例如新聞報導、裁判書等,若要精準分析具有相當技術門檻,因此他們佔有競爭優勢,後進者要追趕上並不容易。尤其是法院的判決文書一旦涉及到企業、貿易往來,其中時常隱藏著龐大的商業脈絡,需要運用深度學習與AI演算法,將其化成結構化資料,才能進一步抽絲剝繭找出潛藏的關係鏈結。

商業風險無處不在 「實告」自動化AI演算大幅降低風險

「實告ΣCOUT」的客群主要分為三類,一類為需要對客戶進行盡職調查與徵信調查的金融業;二類是時常對外招標的政府單位;三類則是一般民間企業的採購單位。宋浩表示,「商業上的合作風險無所不在,遇上中小企業時風險尤其大」,不管國內外,中小企業皆數量龐大、資訊又不易蒐集,再加上國際對於洗錢防制與打擊資恐(AML/CFT)要求均有一定規範,無論是融資、借貸,銀行便需透過像「實告」這樣的系統對往來客戶進行詳盡的查核。

透過獨家語意分析技術,萃取判決書的關鍵詞彙,揭露企業風險事項。

▲透過獨家語意分析技術,萃取判決書的關鍵詞彙,揭露企業風險事項。

此外,政府採購部門一天的招標案可高達上百件;一般企業在挑選採購廠商時前置作業不勝枚舉,若要仰賴人工查核,可說是曠日費時。若能透過自動化系統,將投標、採購廠商的「身家」詳細調查一遍,將能降低未來承攬後未能履約、出工安意外等風險,更能加強提示是否為優良廠商或拒絕往來廠商。 運用AI智能演算法,藍星球獨家開發「商業網絡圖」及「股權結構表」,有助於揭開企業背後錯綜複雜的網絡面紗。宋浩進一步指出,以遠東集團為例,以往要做交叉持股分析,銀行盡職查核人員得徒手畫出200-300條關係路線,但藉由「實告」,只需短短幾秒,複雜的交叉持股網絡即可一目了然。

▲透過資料盤點、蒐集、清洗的正規化流程,從中提取關鍵資訊建構商業網絡。

再如證券市場上有許多投資標的,投資人若不了解企業,投資風險即相當高,透過「實告」的商業網絡圖,卻可嗅出商業上的蛛絲馬跡,如該企業是否為人頭復活的「空殼公司」,更甚,還能挖掘出關係企業背後隱藏的核心人物及最終受益人(UBO)。對於有時負責人、董監事出現同名同姓的情況,宋浩則表示,AI會根據企業活動期間、活動產業的相似性給予不同的權重,權重比例較高,判斷為同一人的可能性也會升高。

臺灣Open Data走在世界前沿 藍星球預計5年內開創新領域與市場

耕耘多年,藍星球資訊現階段可謂台灣文字探勘領域的翹楚。宋浩指出,在前行政院院長張善政擔任政務委員時期,大力推動「政府開放資料」,臺灣的Open Data也因此走在世界的前沿,與英國及日本相當。國內的Open Data資訊多半是文字,歐美國家則為PDF檔或是掃描檔,無法輕易文字化,更難以加值運用。因此,藍星球資訊把握機會,蒐集政府開放資料平臺的數據並加值應用,讓AI結合不同領域的大數據,預計在未來5年內開創新的領域與市場。

在拓展海外市場方面,宋浩透露,過去曾有某外商銀行前來接洽,表示其在全球有多處據點,希望能蒐集全球30個國家的企業資料,如此契機,也讓他起心動念,希望能將藍星球在臺灣的營運服務模式,複製到全球。因此,公司營運的下一階段,即是研究全球可以公開蒐集到的數據,進一步將服務模式推向海外市場,打造國際性的商業實績資料庫。。 自2013年成立以來,藍星球資訊不斷深耕技術,將實驗室的研發成果不斷往商業化路途邁進。宋浩表示,研究室出來的人通常對於研究有其想法與執著,但商業化之後不免必須要妥協於現實情況,他希望10年之後,能將藍星球推向公開發行上市(IPO)之路,帶領團隊成為技術領頭羊,達到成為軟體業「臺灣之光」的終極目標。

藍星球資訊總經理宋浩博士

▲藍星球資訊總經理宋浩博士

推薦案例

【解決方案】瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞
瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞

工具機生產線上,組裝的第一步有些微差池,累積公差將造成組裝工作要重來,耗時又費力,導致出貨延遲的情況將衝擊企業聲譽。耐銳利科技公司聚焦智慧製造領域,提供各式AI解決方案,運用機器學習模型傳承老師傅的經驗,在CNC加工機組裝及鑄造過程,利用AI分析產線數據,精準調校各式數據,提升生產精準度 25。 這套AI產線數據分析系統,被耐銳利科技董事長黃常定稱為「師傅40」,就是師傅加上人工智慧的最進化版,用在工具機加工廠,成效斐然。此外,耐銳利科技運用AI瑕疵檢測技術,參加經濟部工業局2021年AI新銳選拔賽活動,協助友達進行面板進階影像瑕疵檢測,正確率達百分之百,引此也榮獲大獎。 協助面板大廠友達解題 瑕疵檢測正確率達百分百 黃常定進一步說明,一般面板在生產時,邊邊角角可能會有缺陷,雖然缺陷肉眼可見,但AOI卻往往難以辨識,導致檢測錯誤率常常超過30,因此,一定要搭配人力進行複檢,才能提高正確率。然而,因應少量多樣的產品需求,在人力不足的情況下,運用AI檢測確實是一個好方法。 成立於2018年的耐銳利科技,在短短三年期間,AI技術就能獲得面板大廠的青睞,實則在CNC工具機領域磨練已久。耐銳利科技總經理唐國維指出,台灣前三大CNC工具機廠希望將AI導入組裝及鑄造兩條產線,其中,在組裝產線上,為保持組裝的準確性,設計組件的每一個零件均會設計公差,在組裝時,每個元件都在公差內,但累績公差最後品檢仍無法通過,必須拆掉重新組裝,不僅耗時耗力,也造成浪費。 「進入產線之後,才知道有些師傅累積很多經驗,很會調校,經過他調校之後,正確率提高不少,速度又快。」反之,新來的工程師沒有經驗,調校時間比較久,也未必能通過品質檢測。 師傅40系統 良率從70大幅提升至95 唐國維接著表示,原本師傅在組裝時所設定的尺寸資料都記錄在紙本上,資料寫完之後就存入倉庫封存,沒有人去研究尺寸之間的關係。耐銳利協助客戶設計師傅40系統,透過人機面板,讓師傅在組裝時直接輸入所測量的尺寸及相關數據。蒐集不同師傅的數據之後,再運用AI演算法分析數據間的關係,做出AI模型,AI模型自動通知作業員要調整到甚麼樣的尺寸,品質檢測就一定會過,如此一來,良率從70大幅提升至95以上。 耐銳利科技公司聚焦於智慧製造領域,提供各式AI解決方案 唐國維補充,組裝一台CNC加工機的主軸要耗費四小時,第一步驟機器量測錯誤,包括震動、溫度,速度等超過範圍,都要拆掉重裝,又花了四小時。拆掉要如何調整,是憑藉師傅的經驗,可能一開始師傅憑經驗做了最好的組法,但錯檢率也達30,組裝又耗了好幾天。透過AI師傅協助,組裝時間只需半天,良率達95以上,省下許多時間及人力。 「運用機器學習的AI模型,綜合所有師傅的經驗蒐集在一起,提供給AI學習。第一步要數位化、第二步則是知識化,這是企業邁入轉型的重要關鍵」,黃常定認為,耐銳利科技是傳統製造業從自動化生產走向邁向數位轉型的重要夥伴。 此外,耐銳利科技另一個聚焦的產業是電梯廠領導品牌的智慧派車系統。所謂派車指的是電梯車廂,即兩部電梯以上就需要群管理。過往派車依據固定法則,如哪一台距離叫車比較近,就自動派那台電梯,一方面沒有考慮到電梯被叫太多次的派車,可能會讓其他人等待更久;另一方面過往的派車模式並無考慮大樓使用特性,造成許多浪費。例如辦公大樓,早上上班、中午休息及下午下班時段各有尖峰時間,透過AI智慧派車可以依據離峰及尖峰時段進行彈性調整,讓派車效率增加、降低等待時間,同時減少電力虛耗。 導入電梯智慧派車 提升運輸效率兼具環保功能 黃常定補充說明,就好比之前的路口紅綠燈號誌,系統已將主幹道、副幹道及小街道的停留及通過秒數寫死,現在則運用智慧紅綠燈,彈性調整等待時間,讓容易壅塞的路段更加順暢。透過AI學習使用情境,在電梯中導入智慧派車系統,會讓輸送效率提升,也更加環保。 除了導入電梯智慧派車外,耐銳利也將AI導入電梯廠的生產出貨智慧排程系統 。電梯廠常常無法準確預估客戶的電梯交期,例如,辦公大樓或賣場等必須完工到一定程度,電梯才能進工地安裝。若受到客戶工期延遲等非預期因素影響,往往造成電梯廠產閒置或是排程不易安排的窘境。 唐國維指出,一般了解客戶端工程進展者可能是業務或工務,但整體而言,出貨正確率大概只有六成左右,也就是說有四成不會如期出貨。因此,若能準確預估出貨時程,就能將產線空出來以因應急單或是其他產品生產需求。AI智慧排程系統將分析過去出貨的資料,氣候、工廠及施工端兩地距離位置、客戶信用等約20-30個參數,放入AI演算法中,可以精準預估到底能不能如期出貨。 黃常定也特別說明,耐銳利科技的機器學習非一般的機器學習,更加入傳統影像處理技術、統計學等各種運算方式,要對領域知識十分熟稔,才能作出好的AI模型,這也是公司競爭力之所在。他強調,一般SaaS平台能處理的資料十分有限,正確率頂多從7成提升至7成5,耐銳利的強項在於AI演算法及機器學習,必須再加上深厚的產業領域知識才能產出好的AI模型。 耐銳利科技從AI專案開始,逐漸深化技術,選擇從困難度高的做起,並累積經驗法則,預計在今2022年開發出SaaS服務,以客戶的需求為出發點,逐步站穩腳跟、成為智慧製造的重要夥伴。 圖左為耐銳利科技總經理唐國維及董事長黃常定右

【解決方案】AI電眼取代人眼 慧演智能運用AI幫製造業做品管
AI電眼取代人眼 慧演智能運用AI幫製造業做品管

因應製造業少量多樣的客戶需求,亟待可以找到從雲端到終端的AI解決方案。慧演智能提供軟硬整合解決方案-BailAI影像檢測解決方案,來協助傳統製造業提升製程效率及產品品質,達到轉型的初步目標。 政府宣示2017年為台灣「AI元年」之後,台灣AI新創公司如春筍般林立,成立於2018年的慧演智能即鎖定智慧製造,提供AI影像分析與流程優化的平台,以深度學習的方式檢測產品的瑕疵和組裝的步驟異常,協助企業建置從終端到雲端的基礎設施,讓工廠生產端可以自動化監控,以提升製程的效率和品質。 熟悉產線品管流程 以AI影像檢測作為創業主軸 慧演智能創辦人暨執行長劉雅雯年紀輕輕,在大學畢業之後即進入製造業,在硬碟零件的塑膠射出製程擔任品管職務,「當時已經在產線上,對於生產機台的產線流程相當熟悉」,她之後轉換跑道擔任行銷企劃、接著又擔任過AI產品經理,在時機成熟之後,劉雅雯決定創業,以製造業的AI影像辨識作為創業主軸。 「企業的困難在於缺乏AI開發團隊,即使有了AI團隊,開發專案要花很多時間,至少6-12個月」深諳市場痛點的劉雅雯表示,平台要解決的問題是提供傳統製造業不需要程式開發背景的員工,也可以自行打造AI模型的平台,從遠端協助產線的故障排除及後續的系統維護作業,來幫助企業節省開發時間及人力成本。 BailAI影像檢測平台使用場景 面對市場上提供AI影像辨識的競爭對手非常多,慧演智能的技術優勢何在劉雅雯表示,現階段許多企業備有AOI光學檢測設備,但AOI光學檢測在應用上的瓶頸是,只能用於產線速度快、數量多的瑕疵檢測,而每回檢測或生產都要重新調整參數。而根據她對產業的了解,受限於AOI設備動輒上百萬元台幣起跳,大部分中小型傳統製造業,並不具備雄厚的財力,但他們又想要做自動化檢測,這就是慧演智能的機會。 劉雅雯接著表示,傳統製造業不可能養一個包括AI工程師、資料工程師、雲端架構師、終端架構工程師等專業人才的技術團隊,而慧演智能擅長於軟硬體整合,企業透過BailAI影像檢測平台,就能輕鬆解決產線上的檢測問題。換言之,客戶只需提供影像或樣品,交由慧演智能訓練模型、部署模型及系統整合,即可輕鬆使用AI技術進行產線流程優化及監測。 參加AI新銳選拔賽 組裝行為影像辨識辨識率達9成以上 舉例而言,某家連接器廠商,技術團隊只有1-2位AI工程師。主要解決的問題是,大部分作業員都在產線上,而品管及高階主管在遠端,公司欲透過遠端監控方式掌握產線實際情況。慧演智能透過工業相機拍攝產線畫面,並將AI影像分析傳送到遠端,主管及品管人員可以透過螢幕來觀察產線組裝有無錯誤,如連接器頭跟線路有沒有接好等問題。 慧演智能的AI影像檢測架在微軟的Azure雲端平台上進行作業,也會透過終端設備,如NVIDIA的邊緣運算設備放置於檢測站周邊,透過雲端到終端的整合解決方案,協助傳統製造業提升產線效能與及早發現問題。現階段慧演智能的客群包括航空、電子周邊、連接器及金屬等相關產業。 組裝產線人體行為辨識組裝流程解決方案,準確率達9成以上 為了實證技術深度,慧演智能參加經濟部工業局2021年AI新銳選拔賽活動,為光寶科技提供「組裝產線人體行為辨識組裝流程」解決方案,透過相機及AI影像辨識的方式辨識產線作業員的有效工時及無效工時,也就是透過影像辨識手的姿勢及位置,來判斷作業員的組裝行為,其精準率可達9成以上。 劉雅雯補充說明,由於電子零組件組裝工序較複雜,多以人力為主,無法以機械手臂取代,因此慧演智能在光寶的組裝站裡,用鏡頭拍下作業員組裝的流程,再針對影片進行演算法的訓練、校正,最終訓練出的模型能直接判斷組裝過程是否出現任何錯誤,以改善整體流程。 導入BailAI影像檢測平台 專案開發時間可望縮短至1個月 成立三年多以來,慧演智能累積不少專案經驗,希望能將專案經驗產品化,劉雅雯指出,將於今2022年完成BailAI影像檢測試用版,客戶可依檢測物件的精細度選擇工業相機、視訊相機,甚至於X光來擷取影像,再透過平台做影像自動標記,慧演智能會提供符合場域的AI應用模型,供客戶使用,也可以在雲端終端做推論,便於製造業上線使用。包括金屬產業、工業電腦的金屬機殼、連接器、電子周邊,機械零件,皆可利用平台進行瑕疵檢測及物件辨識。 現階段慧演智能將持續提升技術能力,累積客戶的經驗完成產品化,同時加速AI檢測落地應用,中期將建置終端雲端基礎設施,將企業AI專案開發時間從6-12個月縮短至1個月,降低企業使用時間及使用門檻。長期目標將鎖定台商聚集較多的東南亞市場,將軟硬整合AI解決方案拓展到海外市場,擴大營運規模。

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
1 秒鐘完成結帳動作 Viscovery AI 影像辨識助攻智慧零售

近年來,人工智慧 Artificial Intelligence,簡稱 AI 已逐漸改變各行各業的運作模式,不過,絕大部分的工作仍然是由人類完成,AI 則扮演輔助的角色,因而出現了「AI Copilot」一詞,代表「由 AI 驅動的工具或助理」,旨在協助使用者完成各種任務,提高生產力和效率。 AI Copilot 的概念源自於「副駕駛」這個角色,在飛行中,副駕駛協助主駕駛員完成各項任務,確保飛行安全與效率。其實,工業革命的「機器」就開始有 Copilot 的影子,各種機器在不同領域中扮演「Copilot」的角色,輔助人類完成繁重的體力和重複性工作,大幅提升工廠生產效率,推動經濟快速發展。 隨著運算設備的進步、機器學習、深度學習、影像辨識等技術的突破,AI Copilot 的概念逐漸成形。AI Copilot 的發展標誌著從「機器輔助提升到智慧輔助的轉變」。早期的機器人只能完成預設的重複性工作,而現在的 AI Copilot 則能夠學習和適應新的環境與任務,並在實際應用中不斷優化自身表現。這一轉變不僅改變了人機交互的方式,也為各產業帶來了深遠的影響。 AI Copilot 的應用範圍涵蓋了各個行業,包括:金融、醫療、製造、教育、零售hellip等等,無處不在。 AI Copilot 於零售業的應用:AI 影像辨識結帳 在零售業,AI Copilot 的應用已經開始展現具體成果。 以 Viscovery 的 AI 影像辨識結帳系統為例,這套系統即為 AI Copilot 模式的一種,輔助店員加速結帳,或者輔助消費者簡化自助結帳流程。 nbsp 一般的結帳方式需要店員逐一掃描商品條碼,若是無條碼的商品,如:麵包、餐點,則需店員花時間先用肉眼確認品項,再一個個輸入到 POS 結帳系統中。根據一家連鎖麵包店實測,資深店員從「肉眼辨識」到「輸入一盤 6 顆麵包的商品資訊到結帳系統」的過程,就要 22 秒的時間,新進店員需要的時間可能更多。另外,根據一家日本麵包店業者分享,培訓員工認識、熟悉商品需要 1 至 2 個月的時間。 nbsp 現在有了 AI 影像辨識技術,店員可以把「辨識商品」的步驟交給 AI,由 AI 扮演 Copilot 的角色,1 秒內迅速辨識品項,加快結帳,整體節省 50 的結帳時間,優化顧客購物體驗。而培訓員工辨認麵包的時間成本,也能因此有效縮短。 nbsp 即便是帶有條碼的商品,AI 也可以在一秒內快速辨識多個品項,相比逐個掃條碼的方式,效率更高 nbsp 而有 AI 影像辨識「輔助」的自助結帳系統,則能夠讓消費者在沒有店員幫助的情況下,順利完成購物,省去刷條碼或在螢幕上查找品項的麻煩,提升購物體驗,在缺工、找不到店員的時代,也幫助店家降低營運成本。 nbsp AI 快速辨識多件結帳商品只要一秒鐘 圖片來源:Viscovery 近來,致力研發 AI 影像辨識結帳方案的新創在各國嶄露頭角,目前已知最輕量化的解決方案就在台灣,只要在結帳櫃檯安裝一支 Viscovery 的鏡頭與一台搭載 Viscovery AI 影像辨識軟體的平板,即可與店家既有的 POS 結帳系統串接,馬上啟用。 整合方式多元,有隨插即用的作法,也有與店家 POS 整合的 API 串接方案。 Viscovery AI 影像辨識系統可與店家現有的 POS 系統無痛整合 圖片來源:Viscovery AI 影像辨識結帳的導入實例 目前 Viscovery AI 影像辨識系統已導入台灣連鎖烘焙店、新加坡中式麵店、日本仙台百貨公司商辦超商 micormarket、日本麵包店與蛋糕店hellip等等。超過 700 萬筆交易筆數,都是透過這套 AI 系統完成,辨識超過 4000 萬件商品。這些使用案例展示了 Viscovery AI 影像辨識系統在零售行業的廣泛應用,未來將持續深耕、探索零售及餐飲運用 Vision AI 的各種可能。 nbsp Viscovery AI 影像辨識系統已導入日本、新加坡、台灣,使用於麵包店、蛋糕店、餐廳、便利商店等多個場域 圖片來源:Viscovery