:::

【2021 Application Example】 Optical industry AOI imports AI Great Leap Forward to completely solve the pain points of lens defect detection

The stay-at-home economy such as smartphones and remote working is booming, and the information and communication industry is booming, driving the optical industry to flourish. However, the defect detection of optical lenses is mostly carried out by human eyes, which is not only time-consuming and labor-intensive, but also limited by the fact that human eyes are prone to fatigue. The misjudgment rate is also a lingering pain point for the optical industry. Benefiting from the evolution of AI technology, Shangyang Optics introduced diffraction optical technology for shooting, used the images captured by the system as the data source, introduced AI model training, and integrated the camera system and image recognition into a production line workstation, greatly improving defect identification The rate is as high as over 90%.

Taiwan’s optical production value accounts for 10% of the world’s, and the application range of precision optics is expanding day by day

The optical industry is a mainstream product in consumer electronics. Even though Taiwan was affected by the Sino-US trade dispute in 2019, the output value of optoelectronics still reached US$46.3 billion, accounting for 10% of the world's total. Among them, the "precision optics" segment accounts for NT$87 billion (approximately US$2.9 billion) in output value. In view of the increase in the number of smartphone lenses, precision optics still maintains a sustained growth of 4% compared to the decline in other fields.

Since Sharp launched the world's first camera phone equipped with a rear 110,000-pixel lens in 2000, end consumers' requirements for smartphone camera performance have continued to increase, and with the wave of 5G high-speed Internet The advent of the technology has led to the activation of application markets such as augmented reality (AR) or virtual reality (VR). The innovation and application of its technology have added a lot of momentum to the optical industry, and the application fields have extended from smartphones to popularization. to the mass consumer markets such as automobiles and home entertainment.

Optical lenses are inseparable from the economic development of "precision optics". As semiconductor technology continues to mature and network speeds continue to increase, optical lenses are used not only in smartphones, tablets, traditional cameras, projectors, In the field of people's livelihood vehicles, the demand for engineering visual inspection and security applications in high-precision manufacturing processes continues to grow rapidly.

Optical lens defects Detection is mostly done manually.

▲ Optical lens defect detection is mostly done manually.

"Optical lenses" are essential components of the overall optical-mechanical system. The lens finish inspection after incoming materials and before shipment not only affects the overall production line efficiency development, but also has an impact on the quality commitment of end customers that cannot be underestimated. For a long time, the optical industry has mostly used human eye detection for defect inspection. As production volume continues to increase, not only labor costs continue to rise. As inspectors age, their eyesight gradually declines, and the misjudgment rate increases every year. In addition, manpower recruitment has been difficult in recent years. Even if they are lucky enough to be recruited, it is not easy to develop the inspection technology, and the training time is lengthy, making it impossible to respond to the production line manpower needs in a timely manner.

Introducing diffraction optical technology and AI training model to improve defect recognition rate to more than 90%

The current market is flooded with a large number of automated optical inspection systems, and there are many substantial cases of lens defects. However, after years of market exploration and evaluation by Shangyang Optics, this system still cannot solve the current manual inspection problem. The main reason is that the appearance of the optical lens is curved and transparent, and it is not easy to photograph various defects, and once the defects are around There is interference from other stray lights, making judgment more difficult. Moreover, different types of lenses need to be individually rotated and lit and adjusted according to the defect status before entering the judgment stage. The labor consumption ratio is still high, which is not in line with the efficiency and cost.

Through this, through the matchmaking of the AI ​​project execution team of the Industrial Bureau of the Ministry of Economic Affairs, Xiaoma Optics assisted Shangyang Optoelectronics in establishing an effective defect photography system. Pony Optics provides guidance on precision diffraction optics. Based on the characteristics of "light" fluctuations, lens defects can be obtained through a unified lens shooting method. Current photography systems on the market mostly use geometric optics. Geometric optics uses linear light and is not easy to capture defects such as missing coatings, tiny scratches, and liquid dirt. The cooperation plan introduces diffraction optical technology for shooting. Through precise imaging from all angles, it can achieve higher contrast and better noise reduction than ordinary geometric optical elements, so as to obtain the necessary defective images.

Image of scratches and defects on the optical lens.

▲Schematic diagram of optical lens scratches and defects.

In order to improve the more detailed defect detection and recognition rate in this case, Shangyang Optics used the image captured by the system as the data source, imported AI model training, and integrated the camera system and image recognition into a production line workstation, which not only improved the defect recognition rate Reaching more than 90%, it is more conducive to the subsequent development of automated production lines.

The AI ​​model training for this cooperation project is provided by Yirui Technology. Currently, most manufacturers have introduced AOI systems for production line defect inspection. Most of them use OCR (optical character recognition), which refers to the analysis and recognition processing of image files of text data. , the process of obtaining text and layout information) technology needs to be 100% accurate, and there is no room for error, resulting in accidental killings often occurring.

After adding the AI ​​training model, optical lens defects The recognition rate is greatly improved
.

▲After adding the AI ​​training model, the optical lens defect recognition rate is greatly improved.

AI+AOI solves the two major pain points of insufficient manpower and high misjudgment rate

This time, Yirui Technology and Xiaoma Optics cooperated to install Yirui's AI system in the optical inspection instruments developed by Xiaoma Optics, adding AI algorithms to the optical detection of defects, and training based on the data and needs provided by customers. AI model identification can greatly improve the accuracy of identification of defects, improve yield rate, and increase production line efficiency. Through the tripartite cooperation between Shangyang Optics, Xiaoma Optics and Yirui Technology, the optical industry AOI is introduced into AI, hoping to completely solve the pain points of industrial lens defect detection.

Since setting up the production line in 2019, Shangyang Optics hopes to introduce a smart production model. In view of the continuous growth of the company's operations and the continuous improvement of production volume, through the introduction and expansion of this achievement, the demand for manpower will be significantly reduced, and the impact of production scheduling can be reduced due to the high accuracy of the discrimination rate index, thereby improving production efficiency.

Shangyang Optics stated that as the development results are implemented, it will lead the technology to be promoted to upstream and downstream players in the optical industry, such as upstream optical lens raw material suppliers to downstream finished product applications, including immersive gaming equipment and related curved glass products , people's livelihood vehicle and security camera devices, etc.

「Translated content is generated by ChatGPT and is for reference only. Translation date:2024-05-19」

Recommend Cases

這是一張圖片。 This is a picture.
Realizing the dream of unmanned stores, Magpie Life is building the future of the smartphone industry

"The DNA of Magpie Life is not limited to vending machines We believe that vending machines combine technology, access, and humanities to bring us exciting results" This is a sentence on the official website of Magpie Life Let the vending machines bring To live a pleasant life and build a considerate, technological and sustainable future for the smartphone industry is also the original intention of Magpie Life Founded in 2018, Magpie Life launched Taiwan’s first private-brand mobile payment scan code sensor 4 months after its establishment, completing the consumption experience through screen touch The Magpie U1 smart vending machine manages the POS system and gathers data in the background, allowing consumers to synchronize with the world's new retail pace and experience a new retail consumption experience of purchasing convenience, checkout security, visual entertainment, and improved logistics replenishment efficiency Traditional vending machines lack information visibility and AI technology assists in information transparencyThis time, the Magpie smart vending machine is also equipped with AI technology to provide adjustable shelf space , a vending machine equipped with an industrial computer and a large-size touch display screen to achieve the purpose of a store-less store Magpie Life stated that the biggest problem with traditional vending machines is the lack of information visibility To check inventory, replenishment personnel must physically inspect each machine, which is time-consuming and costly When a machine breaks down, it will generally be unable to operate for a long time Most failures go unreported and are not discovered until the next restocking crew arrives to replenish supplies Then you have to wait for a service technician to be scheduled, which can take weeks Traditional vending machines lack real-time interactivity When consumers encounter problems after inserting coins, manufacturers cannot handle them immediately In addition, traditional vending machines are less flexible and cannot adapt to changes in consumer preferences Traditional vending machines have shortcomings such as limited change shopping, single payment tools, limited number of products, and few choices Affected by the COVID-19 epidemic, consumption habits have shifted to contactless methods, causing the unmanned store market to heat up Generally, vending machines can only place relatively simple products such as drinks, food, etc The properties available for sale are limited The patented vending machine developed by Magpie can adjust the shelf space and is equipped with a lifting cargo elevator, which is suitable for various types of goods In addition, the machine is equipped with an industrial computer and a large-size touch display screen, which can meet the needs of advertising support at the same time It is expected to move towards a storeless store According to Magpie Life Observation, the consumer market trend in the past two years is that consumers demand convenient life, food consumption patterns value dining experiencesimple and fast, and are equipped with mobile phone-connected ordering models, and hot drinks and Fresh food delivery is the focus of two major trends The location, items sold, consumption methods and multiple payment methods are the focus of market growth for smart vending machines In terms of convenience, Taiwanese consumers still prefer to purchase vending machine food near stations, airports, schools, and businesses in business districts Various payment methods are also gaining more support from consumers, indicating that in the future, automatic Vending machines can be developed in two directions diversified items and diversified payment methods AI sales forecast technology integrates back-end management to achieve precise marketing purposesDue to the wide variety of products, it is difficult to know the performance of products under different factors such as season, market conditions , promotional activities, etc, it is easy to cause out-of-stock or over-inventory situations Magpie Life has specially developed "AI sales forecasting technology" and integrated it into the back-end management system, hoping to lock in customer purchasing preferences and intentions through data analysis In order to achieve the purpose of precise marketing, make accurate business decisions and effectively allocate limited resources The introduction of AI systems can achieve the three major goals of precise marketing, inventory management and supply chain management This system is a replenishment decision-making aid designed specifically for supply chain managers It uses AI to predict future sales demand, helping companies effectively optimize production capacity, inventory and distribution strategies Its overall system architecture includes1 Data exploratory analysis function Provides automatic value filling, automatic coding and automatic feature screening functions for missing values in the data 2 Modeling function 1 Provides model training functions for two types of prediction problems regression Regression and time series Time Series Forecast nbsp2 Supports Auto ML automatic modeling, and the best model is recommended by the system Integrated models can also be established to improve model accuracy nbsp3 Supports multiple algorithm types Random Forest, XGBoost, GBM and other algorithms nbsp4 Supports a variety of time series models exponential smoothing, ARIMA, ARIMAX, intermittent demand, dynamic multiple regression and other models nbsp5 Supports a variety of model evaluation indicators R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification and other indicators nbsp6 Supports automatic cutting of training data sets and Holdout verification data sets, and can manually adjust the ratio nbsp7 Supports automatic model ensemble learning Stacked Ensemble, balancing function learning Balancing Classes, and Early Stopping nbsp8 Supports the creation of multiple models at the same time The system will allocate resources according to modeling needs, so that modeling, prediction and other tasks have independent computing resources and do not affect each other In the overall server space With an upper limit, computing resources can be used efficiently nbsp9 It has in-memory computing function, which can use large-capacity and high-speed memory to perform calculations to avoid reading and writing a large number of files from the hard disk and improve computing performance 3 Data concatenation function Using API grafting and complete data concatenation automation, there is no need to manually import data, improving user experience 4 Chart analysis function Provides visual charts and basic statistical values for product sales AI data analysis solutions have two major advantages 1 Entrepreneurship machines can be rented and sold at low cost to open unmanned physical stores and cooperate with the chain retail industry Through smart machines, entrepreneurs can rent and sell them at a lower cost than the store rent Cost of running a retail business Two cooperation models, machine sales and leasing, are provided, and the choice is based on the evaluation of the industry 2 Various types of products are put on the shelves Products are sold anytime and anywhere 24 hours a day Up to 60 kinds of diversified products can be put on the shelves Large transparent windows enhance the visibility of products Regular replenishment and tracking of product sales status are available, and product types can be adjusted according to needs Recently, the line between the Internet and the physical world has blurred, the way customers interact has changed significantly, and consumer demand is changing and personalized The retail industry is facing unprecedented challenges and uncertainties, and mastering data has become key AI data analysis solutions can help the retail industry quickly activate large amounts of data, create seamless personalized experiences, optimize the operational value chain and improve efficiency, and strengthen the core competitiveness of enterprises 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
CCTV Intelligent Video Search System

Search for a specific person, find someone with a suitcase entering the factory in Gao'an area Color features of the person and the object confirmed, person in blue and black top, suitcase in black color, throughCCTV the intelligent video search system, by setting object and color retrieval conditions, it can successfully locate three video clips containing the target subject This greatly aids operational staff in finding the target items, and through this system, search speed can far surpass manual effort6fold Pain Points The CSE-Kaohsiung Plant is densely equippedCCTVto monitor every corner of the plant area, but when an incidenthappens, it's impossible within a limited time throughCCTVvideo playback to find the incident, the implications and risks behind this are self-evident Many areas that are usually unmanned can easily become security blind spots Thus, how to monitor a vast plant area more intelligently and effectively is one of the crucial aspects of building a smart plant for the semiconductor industry The AES Plant in Kaohsiung covers a vast area, with many important sites requiring monitoring of personnel movements to ensure corporate secrets and employee safety 1 Automated production lines and warehouses In semiconductor enterprises’ automated production lines and warehouses, oftenAGV(Automated Guided VehicleAGVs automated guided vehicles travel at high speeds if plant personnel inadvertently enterAGVthe moving area and cannot issue a warning to the person, then the regrettable accidents that occur will be too late to reverse 2 Material and product storage areas Materials used in semiconductor-related processes are costly if areas storing materials or products are breached, there is a risk of loss of high-value materialsproducts 3 High-security areas Trade secrets relate to the core technological competitiveness of semiconductor-related enterprises if someone breaches the high-security areas, there is a risk of corporate secrets being leaked The safety of trade secrets has always been one of the most critical issues for semiconductor enterprises 4 Loading docks At AESLButthe dock area often has loading vehicles coming and going if someone intrudes into the dock area, there is a risk of vehicle collisions and accidents Additionally, goods awaiting shipment at the dock area could be stolen or potentially damaged from collisions, thus causing significant reputation and financial losses for the company, further leading to production and shipping inconvenience When an abnormal event occurs, how to quickly search for the relevant key footage from massive data Many important locations within the AES Kaohsiung Plant need to be equippedCCTVfor safety checks, butCCTVWith thousands to tens of thousands of cameras, manually searching through footage for an event requires laborious frame-by-frame review which is time-consuming and inefficient In light of advancements in computer vision, it's beneficial to utilizeAIto replace manual playback and searching Problem Scenario Object Detection The data source for object detection comprises two parts Open-source datasetsOIDv4and AES Kaohsiung PlantCCTVImage files For these files, search for usable data, specificallyOIDv4image files For these files, extract the defined nine major categories of objects for training data among them, two object categories, knives and gasoline barrels, were not found inOIDv4found usable data for knives and gasoline barrels, while the remaining seven categories of objects are available fromOIDv4useful training data found for the remaining seven categories of objects, all marked Regarding the Kaohsiung PlantCCTVimage files, select some frames Frame of the footage, and manually annotate the objects to be_detected for training and testing data Nine Major Objects Color Recognition The data source for color recognition is divided into two partsInternet image screenshots, and Kaohsiung PlantCCTVimage files Currently, no publicly available open-source datasets specifically for color recognition applications have been found, so images are collected from the web Search the web for images of the defined nine major object categories, save the images after separating the objects from the background, keeping only the object sections, and mark the images according to color Additionally, for the Kaohsiung PlantCCTVimage files, use the already-markedbounding boxextractCCTVimage files from variousFramesections of objects identified by color, and finally, visually identifiable images are marked according to color Each object category has its specific color definition, depending on the usual colors seen in these objects in real life Dynamic Ignore during Training FromOIDv4during the training of the object detection pilot model, since each image in this dataset is only marked for a single category, but the image may contain other desired detection categories unmarked For such cases, dynamic ignore techniques will be employed during training to avoid confusion Next, use the extracted training data from the Kaohsiung Plant toFine-Tuneenhance the detection rate of the object in specific designated areas Finally, select the model that computes the lowest loss value in the test set during the training process as the main object_detection model Dynamic Ignoring AIHelp You View CCTV The intelligent video search system primarily serves as an assistive system for searching surveillance footage, capable of speeding up the process of finding target events by setting search conditions for objects By simply defining the search conditions, you can quickly produce thumbnails of critical objects and playback for review, shortening the time required for manual case retrieval of the past The search time is quickly6doubled, allowing the front-end security unit to use this platform to strengthen the first line of risk management supervision and take timely preventive measures 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
Hamastar Technology Builds an AI Model Management Platform to Accelerate the Application of AI

Riding the AI hype train, financial service providers are using their solid foundation in the industry to not only transform themselves, but also assist their customers with transformation Hamastar Technology, which has been established for over two decades, has been developing AI technology and assisting industry customers with the implementation of AI in recent years Hamastar Technology believes that to implement a complete AI project, in addition to AI theoretical knowledge, data analysis, and model training capabilities, it is also necessary to develop APIs for data, establish databases, develop front-end RWD web pages, and even consider layout design and user experience based on customer needs These tasks create technical barriers for AI startups Even from the perspective of companies that have reached a certain scale, it is hard to accumulate technical experience and accelerate business growth due repeatedly investing manpower developing similar functions in each project Institutional customers still require high level of customization for AI Using the requirements of government Agency A implemented by Hamastar Technology as an example, users must control false information from specific channels The platform needs to provide data ingestion functions for training models and predictions, and can complete natural language processing NLP text classification model training and use When the model discovers false information, it needs to immediately notify responsible personnel through messaging software The need of Agency B is to use an AI model to automatically classify petitions and immediately provide information on past cases as reference for the petitioner or officer Although the project models are similar data ingestion, model prediction, warning notification, the required functions still need to be separately developed for individual projects, and existing programs and models cannot be reused to speed up the implementation of subsequent projects After in-depth discussion, Hamastar Technology found that pain points of enterprises implementing AI projects include high implementation costs and lengthy project schedules It is difficult for a single enterprise to simultaneously have data scientists, analysts, engineers, and designers Current projects are all focused on solving the needs of specific fields, and it is difficult to reuse the AI models in other fields of application At the same time, the tools are concentrated in AI projects and cannot provide customers with total solutions In other words, due to the "limited manpower," "restricted fields," and "insufficient tools" of AI service providers, the implementation of AI technology projects requires high costs or lengthy timelines These are common problems that companies urgently need to solve Therefore, if there is an AI model application service management platform, it will be able to solve the above difficulties and not only reduce costs, but also accelerate project implementation and provide customers with one-stop solutions AI model application service management platform assists in quickly completing projects Therefore, with the support of the AI project of the Industrial Development Bureau, Ministry of Economic Affairs, Hamastar Technology carried out the "AI Model Application Service Management Platform AISP RampD Project" and engaged in the RampD of AISP products The purpose is for AI service providers to complete the AI projects with twice the result using only half the effort The AISP provides one-stop AI solutions AI service providers can quickly assemble required functions, such as data API, model management, and model prediction result monitoring subscription through existing module functions of the AISP It also provides commonly used graphical tools to help companies quickly design interactive charts or dashboards required by users, effectively reducing the labor costs required to execute projects, shortening the solution POC or implementation time, and accelerating the implementation and diffusion of industry AI In terms of product business model, in the short term, the company will extensively invite IT service providers with expertise in the field of AI to work together, and use platform services to solve the AI implementation problems faced by requesting units in various field, gradually building trust in the platform brand In the mid-term, the company hopes to gradually expand the market based on its past success, and form strategic alliances with multiple IT service providers to solve more and wider problems in specialized fields and provide more solutions for units to choose from The platform combines field experts to jointly expand overseas markets In the long term, after establishing AI strategic alliances in various specialized fields, the platform will have a large number of AI solution experts for specialized fields After accumulating a large amount of successful project experience, Hamastar Technology hopes that the AISP will be able to work with experts companies to expand into the international market Harmastar Technology Co, Ltd was formed in 2000 by recruiting numerous senior professional managers and technical experts in related fields It is committed to software technology RampD and services, and aims to develop into an international software company, actively creating opportunities for international cooperation in the industry Under the excellent leadership of its first president, the company has rapidly grown into a major software company in Taiwan