:::

【2020 Application Example】 AI constructs the best coating model to reduce the inspection cost of scrap electrical steel sheets, saving NT$2 million per year

Surface treatment applications face rising costs and talent gaps

The development of metal surface treatment technology affects the quality of aerospace, automobile, machinery, home appliance, communications, and fastener products sold domestically and exported. At the same time, it plays a pivotal role in domestic smart machinery, national defense, and circular economy in the " 5+2 Industrial Innovation Plan." According to 2018 survey statistics, the output value of the metal surface treatment industry reached NT$151.5 billion, an increase of 3.6% compared to 2017.

However, metal surface treatment is a labor-intensive, energy-consuming, and pollution-intensive industry. It has long suffered from a shortage of professional and technical talent, and the tightening of environmental regulations has caused processing costs to continue to rise. As a result, the industry is facing a crisis of survival and a crisis of competition from international high-value supply chains.

Manual quality control faces market challenges, while the coating process has found new opportunities

Overseas markets currently account for 70% of the revenue of a domestic steel plate coating plant. It expanded into the automotive steel, diverse supply chain, and various special steel product markets in 2016. It is imperative to improve the quality of surface treatment through innovative technologies, in order to seize international markets.

In the continuous steel plate coating process, the price difference between finished steel plate products and defective products is about 10 times. Manual inspection is used in the current stage. During the production process, 10 m needs to be cut from each steel coil and becomes fixed inspection waste, incurring a significant amount of cost for waste materials, and also delaying production. At the same time, the instability in manual inspection quality also makes production quality unstable.

The Southern Taiwan Industry Promotion Center (STIPC) utilized the guidance capabilities it accumulated over a decade in Southern Taiwan, and matched the steel plate coating plant’s pain point with an AI optical measurement technology service provider. This reduced the cost of consumables used in steel plate inspection, and reduce errors caused by fatigue during manual inspection.

Stabilizing steel plate coating quality with optical measurement technology

In order to control the quality of the coating process, image recognition must be used to identify product yield. General measurement technology requires contact to detect the thickness of coating. Therefore, the STIPC match the plant with an AI optical measurement technology service provider to assist in the development of a non-contact optical measuring instrument, record coating data, and then compare the data to obtain the best process parameters.

Illustration of 3D non-contact measuring instrument testing

▲Illustration of 3D non-contact measuring instrument testing

Presentation of measuring instrument data

▲Presentation of measuring instrument data

Rapid scanning through AOI achieves non-contact measurement. It can quickly scan the profile and overall dimensions of the object being measured without directly making contact with the product or damaging the surface of the steel plate. It can immediately control coating thickness and quality of steel plates without increasing cost. We hope to calculate data of the process environment and design the product abnormality warning range, so that it can be used to make the process smarter.

In the future, this solution will further detect surface defects and color differences of finished steel plates to reduce the proportion of discarded material, solve the problem of the gap in professional and technical talent, and improve product yields.

Schematic diagram of non-contact measuring instrument

▲Schematic diagram of non-contact measuring instrument

Establish an AI coating model to create world-class steel plate supply standards

With the guidance of the STIPC in 2020, the steel plate coating plant accelerated the application of advanced process technology and established quantified indicators of surface treatment process quality standards, which will help domestic surface treatment companies produce high-quality electrical steel sheets, and is expected to increase the product price by 2%.

In addition, it can also assist companies in the industry obtain heat treatment certifications for high-value aerospace, electric vehicle, fastener, and aerospace products, increasing the industry’s added value through innovative thinking, and continuing to lead the metal industry forward.

Recommend Cases

這是一張圖片。 This is a picture.
Realizing the dream of unmanned stores, Magpie Life is building the future of the smartphone industry

"The DNA of Magpie Life is not limited to vending machines We believe that vending machines combine technology, access, and humanities to bring us exciting results" This is a sentence on the official website of Magpie Life Let the vending machines bring To live a pleasant life and build a considerate, technological and sustainable future for the smartphone industry is also the original intention of Magpie Life Founded in 2018, Magpie Life launched Taiwan’s first private-brand mobile payment scan code sensor 4 months after its establishment, completing the consumption experience through screen touch The Magpie U1 smart vending machine manages the POS system and gathers data in the background, allowing consumers to synchronize with the world's new retail pace and experience a new retail consumption experience of purchasing convenience, checkout security, visual entertainment, and improved logistics replenishment efficiency Traditional vending machines lack information visibility and AI technology assists in information transparencyThis time, the Magpie smart vending machine is also equipped with AI technology to provide adjustable shelf space , a vending machine equipped with an industrial computer and a large-size touch display screen to achieve the purpose of a store-less store Magpie Life stated that the biggest problem with traditional vending machines is the lack of information visibility To check inventory, replenishment personnel must physically inspect each machine, which is time-consuming and costly When a machine breaks down, it will generally be unable to operate for a long time Most failures go unreported and are not discovered until the next restocking crew arrives to replenish supplies Then you have to wait for a service technician to be scheduled, which can take weeks Traditional vending machines lack real-time interactivity When consumers encounter problems after inserting coins, manufacturers cannot handle them immediately In addition, traditional vending machines are less flexible and cannot adapt to changes in consumer preferences Traditional vending machines have shortcomings such as limited change shopping, single payment tools, limited number of products, and few choices Affected by the COVID-19 epidemic, consumption habits have shifted to contactless methods, causing the unmanned store market to heat up Generally, vending machines can only place relatively simple products such as drinks, food, etc The properties available for sale are limited The patented vending machine developed by Magpie can adjust the shelf space and is equipped with a lifting cargo elevator, which is suitable for various types of goods In addition, the machine is equipped with an industrial computer and a large-size touch display screen, which can meet the needs of advertising support at the same time It is expected to move towards a storeless store According to Magpie Life Observation, the consumer market trend in the past two years is that consumers demand convenient life, food consumption patterns value dining experiencesimple and fast, and are equipped with mobile phone-connected ordering models, and hot drinks and Fresh food delivery is the focus of two major trends The location, items sold, consumption methods and multiple payment methods are the focus of market growth for smart vending machines In terms of convenience, Taiwanese consumers still prefer to purchase vending machine food near stations, airports, schools, and businesses in business districts Various payment methods are also gaining more support from consumers, indicating that in the future, automatic Vending machines can be developed in two directions diversified items and diversified payment methods AI sales forecast technology integrates back-end management to achieve precise marketing purposesDue to the wide variety of products, it is difficult to know the performance of products under different factors such as season, market conditions , promotional activities, etc, it is easy to cause out-of-stock or over-inventory situations Magpie Life has specially developed "AI sales forecasting technology" and integrated it into the back-end management system, hoping to lock in customer purchasing preferences and intentions through data analysis In order to achieve the purpose of precise marketing, make accurate business decisions and effectively allocate limited resources The introduction of AI systems can achieve the three major goals of precise marketing, inventory management and supply chain management This system is a replenishment decision-making aid designed specifically for supply chain managers It uses AI to predict future sales demand, helping companies effectively optimize production capacity, inventory and distribution strategies Its overall system architecture includes1 Data exploratory analysis function Provides automatic value filling, automatic coding and automatic feature screening functions for missing values in the data 2 Modeling function 1 Provides model training functions for two types of prediction problems regression Regression and time series Time Series Forecast nbsp2 Supports Auto ML automatic modeling, and the best model is recommended by the system Integrated models can also be established to improve model accuracy nbsp3 Supports multiple algorithm types Random Forest, XGBoost, GBM and other algorithms nbsp4 Supports a variety of time series models exponential smoothing, ARIMA, ARIMAX, intermittent demand, dynamic multiple regression and other models nbsp5 Supports a variety of model evaluation indicators R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification and other indicators nbsp6 Supports automatic cutting of training data sets and Holdout verification data sets, and can manually adjust the ratio nbsp7 Supports automatic model ensemble learning Stacked Ensemble, balancing function learning Balancing Classes, and Early Stopping nbsp8 Supports the creation of multiple models at the same time The system will allocate resources according to modeling needs, so that modeling, prediction and other tasks have independent computing resources and do not affect each other In the overall server space With an upper limit, computing resources can be used efficiently nbsp9 It has in-memory computing function, which can use large-capacity and high-speed memory to perform calculations to avoid reading and writing a large number of files from the hard disk and improve computing performance 3 Data concatenation function Using API grafting and complete data concatenation automation, there is no need to manually import data, improving user experience 4 Chart analysis function Provides visual charts and basic statistical values for product sales AI data analysis solutions have two major advantages 1 Entrepreneurship machines can be rented and sold at low cost to open unmanned physical stores and cooperate with the chain retail industry Through smart machines, entrepreneurs can rent and sell them at a lower cost than the store rent Cost of running a retail business Two cooperation models, machine sales and leasing, are provided, and the choice is based on the evaluation of the industry 2 Various types of products are put on the shelves Products are sold anytime and anywhere 24 hours a day Up to 60 kinds of diversified products can be put on the shelves Large transparent windows enhance the visibility of products Regular replenishment and tracking of product sales status are available, and product types can be adjusted according to needs Recently, the line between the Internet and the physical world has blurred, the way customers interact has changed significantly, and consumer demand is changing and personalized The retail industry is facing unprecedented challenges and uncertainties, and mastering data has become key AI data analysis solutions can help the retail industry quickly activate large amounts of data, create seamless personalized experiences, optimize the operational value chain and improve efficiency, and strengthen the core competitiveness of enterprises 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

這是一張圖片。 This is a picture.
CCTV Intelligent Video Search System

Search for a specific person, find someone with a suitcase entering the factory in Gao'an area Color features of the person and the object confirmed, person in blue and black top, suitcase in black color, throughCCTV the intelligent video search system, by setting object and color retrieval conditions, it can successfully locate three video clips containing the target subject This greatly aids operational staff in finding the target items, and through this system, search speed can far surpass manual effort6fold Pain Points The CSE-Kaohsiung Plant is densely equippedCCTVto monitor every corner of the plant area, but when an incidenthappens, it's impossible within a limited time throughCCTVvideo playback to find the incident, the implications and risks behind this are self-evident Many areas that are usually unmanned can easily become security blind spots Thus, how to monitor a vast plant area more intelligently and effectively is one of the crucial aspects of building a smart plant for the semiconductor industry The AES Plant in Kaohsiung covers a vast area, with many important sites requiring monitoring of personnel movements to ensure corporate secrets and employee safety 1 Automated production lines and warehouses In semiconductor enterprises’ automated production lines and warehouses, oftenAGV(Automated Guided VehicleAGVs automated guided vehicles travel at high speeds if plant personnel inadvertently enterAGVthe moving area and cannot issue a warning to the person, then the regrettable accidents that occur will be too late to reverse 2 Material and product storage areas Materials used in semiconductor-related processes are costly if areas storing materials or products are breached, there is a risk of loss of high-value materialsproducts 3 High-security areas Trade secrets relate to the core technological competitiveness of semiconductor-related enterprises if someone breaches the high-security areas, there is a risk of corporate secrets being leaked The safety of trade secrets has always been one of the most critical issues for semiconductor enterprises 4 Loading docks At AESLButthe dock area often has loading vehicles coming and going if someone intrudes into the dock area, there is a risk of vehicle collisions and accidents Additionally, goods awaiting shipment at the dock area could be stolen or potentially damaged from collisions, thus causing significant reputation and financial losses for the company, further leading to production and shipping inconvenience When an abnormal event occurs, how to quickly search for the relevant key footage from massive data Many important locations within the AES Kaohsiung Plant need to be equippedCCTVfor safety checks, butCCTVWith thousands to tens of thousands of cameras, manually searching through footage for an event requires laborious frame-by-frame review which is time-consuming and inefficient In light of advancements in computer vision, it's beneficial to utilizeAIto replace manual playback and searching Problem Scenario Object Detection The data source for object detection comprises two parts Open-source datasetsOIDv4and AES Kaohsiung PlantCCTVImage files For these files, search for usable data, specificallyOIDv4image files For these files, extract the defined nine major categories of objects for training data among them, two object categories, knives and gasoline barrels, were not found inOIDv4found usable data for knives and gasoline barrels, while the remaining seven categories of objects are available fromOIDv4useful training data found for the remaining seven categories of objects, all marked Regarding the Kaohsiung PlantCCTVimage files, select some frames Frame of the footage, and manually annotate the objects to be_detected for training and testing data Nine Major Objects Color Recognition The data source for color recognition is divided into two partsInternet image screenshots, and Kaohsiung PlantCCTVimage files Currently, no publicly available open-source datasets specifically for color recognition applications have been found, so images are collected from the web Search the web for images of the defined nine major object categories, save the images after separating the objects from the background, keeping only the object sections, and mark the images according to color Additionally, for the Kaohsiung PlantCCTVimage files, use the already-markedbounding boxextractCCTVimage files from variousFramesections of objects identified by color, and finally, visually identifiable images are marked according to color Each object category has its specific color definition, depending on the usual colors seen in these objects in real life Dynamic Ignore during Training FromOIDv4during the training of the object detection pilot model, since each image in this dataset is only marked for a single category, but the image may contain other desired detection categories unmarked For such cases, dynamic ignore techniques will be employed during training to avoid confusion Next, use the extracted training data from the Kaohsiung Plant toFine-Tuneenhance the detection rate of the object in specific designated areas Finally, select the model that computes the lowest loss value in the test set during the training process as the main object_detection model Dynamic Ignoring AIHelp You View CCTV The intelligent video search system primarily serves as an assistive system for searching surveillance footage, capable of speeding up the process of finding target events by setting search conditions for objects By simply defining the search conditions, you can quickly produce thumbnails of critical objects and playback for review, shortening the time required for manual case retrieval of the past The search time is quickly6doubled, allowing the front-end security unit to use this platform to strengthen the first line of risk management supervision and take timely preventive measures 「Translated content is generated by ChatGPT and is for reference only Translation date:2024-12-12」

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
Maintaining the reputation of the “Kingdom of Yachts” - Kha Shing Enterprise introduces the first domestic FRP ultrasonic smart inspection of composite materials

The Kaohsiung-based Kha Shing Enterprise Co, Ltd was established over 40 years ago, and is Taiwan's largest customized yacht company with customers all over America, Europe, Asia, and Australia, earning Taiwan the reputation of the "Kingdom of Yachts" Current FRP hull inspection still relies on traditional methods, such as visual inspection and knocking sounds, which is time-consuming and labor-intensive Kha Shing has applied PAUT array ultrasonic inspection to hull FRP composite materials for the first time, and combined it with AI to interpret ultrasound images, develop complete intelligent solutions, and create emerging markets for inspection companies Kha Shing Enterprise Co, Ltd was formerly Kha Shing Wood Industry Co, Ltd, and was a factory specializing in wood import in Kaohsiung Linhai Industrial Park when it was first established It began to design, manufacture, and sell yachts in 1977 After the second-generation successor of the company, President Kung Chun-Hao entered the company, he made a breakthrough in the previous manufacturing model that relied mainly on the skills of master craftsmen, introduced digital manufacturing to accelerate shipbuilding, and began to make larger yachts, ranking in the top 20 manufacturers worldwide among manufacturers of large yachts over 24 feet It also set a record of delivering 94 yachts within one year, earning Taiwan the reputation of "Kingdom of Yachts" Defect detection ensures yacht quality, using AI to replace humans to achieve higher efficiency Defect detection is very important to ensuring yacht quality At present, the yacht industry still uses very traditional defect detection methods The hull structure is usually made by hand lay-up or the vacuum infusion process, using visual inspection or knocking and the frequency of the sound to determine defects It requires time-consuming manual inspection If there are any defects, they must be reworked and repaired, and a gel coat subsequently sprayed The hull must be constructed in sections to facilitate inspection For large yachts over 24 meters long, construction in sections is very time-consuming and labor-intensive To shorten the time of the yacht manufacturing process, Kha Shing Enterprise will first carry out the gel coating process for the hull, and then perform the hand lay-on process The hull manufacturing process has two types of composite material test specimen structures In terms of 54-foot yacht hulls, the hull contains gel coat, core material, fiber and resin, and the total thickness is about 32cmplusmn01cm, which is twice the total thickness of FRP hull without core material of about 16cmplusmn01cm Defects such as incomplete impregnation of glass fiber or residual air bubbles between glass fiber and resin occasionally occur during the manufacturing process The types of defects include insufficient resin, voids, and delamination Once defects occur, the supply of hull materials will be insufficient and yacht delivery will be delayed Schematic diagram of types of FRP hull In order to solve this problem, Kha Shing Enterprise has engaged in technical cooperated with the metal materials industry and the AI technology industry, combining the ultrasonic inspection expertise of the metal materials industry with AI technologies developed by the AI technology industry in recent years to help solve issues of Kha Shing Enterprise with defect detection The method uses PAUT on the composite material structure of yachts, conducts FRP ultrasonic evaluation to determine the thickness of the yacht hull and material properties, and evaluates the ultrasonic probe frequency applicable to the hull structure based on professional ultrasonic experience After testing, a frequency of 5MHz and a probe width of 45mm can successfully find the location and size of defects in the simulated defect test specimen The three parties jointly found defect detection solutions from array ultrasonic evaluation, AI technology model development, and actual application in yachts The image inspected is an ultrasound image The image displays different colors based on the ultrasonic feedback signal An AI model that automatically identifies defective parts is established through the YOLO algorithm If the amount of abnormal data collected is insufficient for training, the CNN-based Autoencoder algorithm is used to collect normal image data for training and construct an AI model for abnormality detection The object detection YOLO model is trained by inputting image data marked as having defects, while the abnormality detection model is trained by inputting image data without defects Simulated defective specimen corresponding to PAUT results Defect detection by and AI system can shorten the construction period by 15 months and speed up determination by 50 After the development of this AI system is completed, it will be validated on actual 54-foot yachts of Kha Shing Enterprise, and can effectively resolve issues with defects The application of AI technology in ultrasonic inspection for intelligent determination is expected to accelerate determination by approximately 50, and will also shortens the construction period by 15 months, effectively improving the speed and quality of the yacht manufacturing process As Taiwan develops larger and more refined yachts, it will create opportunities for industry optimization and transformation, as well as opportunities for the development of key technologies The application of an AI ultrasonic inspection solution for composite materials is the first of its kind in the yacht industry, and is expected to attract more yacht manufacturers with inspection needs The AI ultrasonic inspection solution for composite materials has three major competitive advantages 1 Professional inspection experience and digital database to facilitate process management and analysis 2 Automatic AI determination and identification quickly identifies defects and provides immediate feedback to process engineers 3 High-efficiency process inspection provides defect repair recommendations, reduces damage rate, and improves the strength and quality of composite materials The application of AI technology can optimize the yacht manufacturing process, reduce manual inspection, create added value through the application of AI in Taiwanrsquos yacht industry, increase international purchase orders, and allow Taiwan yachts to continue to enjoy a good reputation in the world Furthermore, this business model has also spread to fields of application related to composite materials, increasing cross-sector market usage It is estimated to contribute approximately NT14 to NT2 billion in economic benefits to Taiwan's equipment maintenance and non-destructive testing market