:::

【109年 解決方案】 AI養魚提高30%產量 省電效益5成

台灣素有「養蝦王國」之稱,然而,受到天氣劇烈變化及養殖經驗無法傳承等困境,使得養殖戶遇到不可測的風險逐漸升高。透過AIoT(人工智慧加上物聯網),寬緯科技啟動智慧養殖的風潮,提升傳統養殖價值的創新模式。

根據農委會統計,全台漁產產值約新台幣1000億元左右,其中600億元是遠洋漁業為主所貢獻的外銷產值,400億元是沿近海漁業及養殖漁業的產值,而佔地面積達到4萬公頃的養殖漁業,成為台灣從「鰻魚王國」、「養蝦王國」、「觀賞魚王國」到「吳郭魚王國」等過程中最強而有力的後盾。

然而,受到天氣劇烈變化影響,2018、2019兩年的冬季均是明顯的暖冬,平均氣溫創下72年最高,打亂了漁產的繁殖時序,嚴重影響產量。

AI養魚 降低30%成本提高30%產能

雖說漁夫也是「靠天吃飯」,卻能利用人工智慧的方式,提前預警,將風險降至最低。位於新竹的寬緯科技專注於物聯網系統開發與人工智慧演算法於水產養殖產業的智能應用,研發「水聚寶智慧養殖監測系統」及「智能設備控制系統」,協助業者即時取得水溫(Temp)、溶氧量(DO)、酸鹼值(PH)、氧化還原電位(ORP)、鹽度(Salinity)等數據;而加裝智能設備控制系統的用戶還可依水中溶氧自動啟動水車及設定自動投料,漁民只需透過手機APP即可隨時掌握狀況,提前防範、降低損失。透過科技養殖,有效降低成本,創造無限商機外,漁民可精準的監測及控制養殖水質及水產品的成長過程,所以能提供給消費者更安全的食物。

寬緯科技總經理蔡政勳表示,傳統漁民的作法是對於水質早晚各量一次,投放飼料也各憑經驗,此舉不僅耗時,也可能因為環境的劇烈變化或投料過多,對水質產生不利變因,「水聚寶智慧養殖監測系統」採取連續性的蒐集,每五分鐘蒐集一次資訊,一天蒐集的數據高達1,000個,一旦發生異常狀況,如飼料投入太多,造成水質混濁汙染,或是水溫偏高偏低等,透過APP傳輸給漁民,都能即時進行處理。

▲AI監控水質變化

寬緯科技總經理蔡政勳

▲寬緯科技總經理蔡政勳

蔡政勳表示,透過數據的監測,當數據在正常值範圍內,可以不用打水車或是投放飼料,以維持水質的穩定並降低成本,一般而言,養殖成本有一半是飼料,電費則占15%-20%。。根據成功大學「微藻生技與工程實驗室」羅泳中博士對於微藻飼料養蝦研究,導入「水聚寶智慧養殖監測系統」後發現,電費可節省近60%左右,加上飼料投入減少,整體可降低30%的養殖成本。

全台300池 導入水聚寶智慧養殖監測系統

而海洋大學研究也指出,科技化設備若再加上排污管等基礎建設,將可有效提升養殖漁獲30%的產能。對於漁民而言,智慧化養殖確實對提高收益有相當大的幫助。

養殖達人黃國良,在台南將軍養殖虱目魚已經是第三代,其獨創的養殖工法,即利用生態平衡的友善養殖,即利用智慧養殖監控系統,及早發現問題,同時透過遠端控制節能電箱,以達最大產能,節省成本。蔡政勳表示,水聚寶利用太陽能發電,每5分鐘回報魚塭池水數據,以龍膽石斑為例,至少要養三年,大約20台斤才能賣,水溫以16度為警戒,若低溫來襲,溫度低於10度以下,龍膽石斑就會凍死,透過監控系統,就能提早預防,降低損失。

寬緯科技目前於全台養殖池導入多達300池,包括新竹、枋寮、花蓮、台東等,運用水聚寶所擁有的水質及環境遠端監控、智慧節能、自動餵食、自動建立產銷履歷等多項特色,可以讓每個養殖戶都能依照自己的養殖習慣,記錄養殖數據與養殖過程,還能選擇自行手動控制或由AI協助及時預警,還能遠端視訊連線監看案場,讓水聚寶水產養殖物聯網系統能夠更接地氣。

水質監測設備

▲水質監測設備

▲看天吃飯的漁民,可透過AI監控系統掌握養殖池水質

本身就是台灣人工智慧學校新竹分會經理人班第一期,同時擔任台灣人工智慧學校校友會副會長的蔡政勳,對於人工智慧的研究非常投入,未來將持續優化數據,提出更多的應用。寬緯科技也獲得英特爾對台灣物聯網成熟解決方案的認證,是亞州少數取得認證的企業之一,他表示,運用雲端、大數據物聯網、AI人工智慧的技術及設備,以科學化的數據管理,加上持續建檔的大數據資料及AI演算,可快速發掘潛在風險,有效避免及減少養殖損失。

寬緯科技展場,副總統當選人賴清德(左二)也前往加油打氣

▲寬緯科技展場,副總統當選人賴清德(左二)也前往加油打氣

推薦案例

【解決方案】7毫秒內分離人聲 洞見未來科技協助聽損者「聽說更簡單」
7毫秒內分離人聲 洞見未來科技協助聽損者「聽說更簡單」

某週四下午,下了一場傾盆大雨,然而,位於台北小巨蛋附近的洞見未來科技RelaJet台北體驗中心內,客戶預約全滿,主要是聽損人士前來試聽運用人聲分離引擎設計製造出來的助輔聽器,對於聽損人士而言,能夠有平價、輕巧、降噪效果佳的助輔聽器可用,真可謂一大福音。 「希望幫助有需要的使用者,再次聽見世界的精彩」這是同為聽損人士的RelaJet創辦人暨執行長陳柏儒體貼的期望,他最懂得聽損者的需求,也希望藉由洞見未來科技獨特的人聲增幅助聽技術,能夠造福更多的人。 萬元有找的輔聽器 造福廣大聽損者 成立於2018年的RelaJet,是陳柏儒與哥哥陳宥任共同創辦的公司。RelaJet所研發的多人聲分離引擎搭配高通藍牙音訊平台,將動輒8-10萬元的進口助聽器價格壓低到萬元有找,就是希望能研發平價、降噪效果佳、可運用無線傳輸連結手機的好商品。 公司成立後的前2年,主要研發多人聲分離引擎,讓降噪效果更佳,搭載上高通藍牙耳機晶片之後,音訊處理時間極短,大約7毫秒就能強化主要人聲、降低周圍噪音干擾,只需要傳統助聽器醫療標準16毫秒不到一半的時間,幾乎「零延遲」。 洞見未來科技推出平價助輔聽器,大大嘉惠聽損者 陳宥任解釋,主要是運用高通晶片的邊緣運算,加上極簡化的演算法才能做到極低延遲及聲音可以處理更好的降噪度,同時助聽器可涵蓋18個頻道,傳統的助聽器涵蓋的範圍是4-48個頻道,未來RelaJet會朝更多頻道逐步邁進。 根據統計,全球聽覺障礙者總計47億人,其中,已開發國家聽力輔具配戴率平均為30,其中以歐美國家最多。台灣有近150萬人失能性聽損,其中,中老年族群失能性聽損就佔了30,而輔具配戴率僅有10,比率相當低。 陳宥任進一步分析,輔具配戴率偏低有兩個原因,一、國際大品牌平均售價高達8-20萬元,可使用期限3年,不僅售價高、養護成本也高,讓很多人卻步;二、在吵雜環境下,噪音也被放大,使用者仍然不一定能聽得清楚,並且聲音參數無法即時、自由調整,需要常回到門市調校不是很方便。三、大部分機種無法連接手機,不方便聽損者接聽聽電話。 運用高通藍牙晶片 產品開發速度大躍進 有鑑於此,曾在聯發科擔任半導體工程師的陳柏儒負責技術研發,有法務背景的陳宥任主責公司的管理與營運,兄弟合作無間,組建團隊運用AI人工智慧演算法與晶片串接,學習數據庫內幾千小時的音檔,透過神經網路與深度學習技術,研發出低延遲、高降噪的人聲增幅助聽技術。並在2019年將此聲音處理技術整合至高通藍牙晶片,並獲得高通台灣新創競賽獲得冠軍、高通全球擴展計畫夥伴的榮譽,讓產品開發速度大躍進,2021年在台灣推出自有品牌Otoadd系列助輔聽產品,並受到市場的青睞以及有廣大聽損者的好評。 根據不同消費者的需求,有不同的產品設計,陳宥任表示,Otoadd具有輔聽功能的無線耳機N1,屬於頸掛式入門款,售價一副9,500元,可以一邊帶輔聽器一邊聽電話,運用手機App即可控制降噪強度及聲量大小。未來也將研發周邊配件,以符合年長者的需求。該輔聽器除了在台北、高雄體驗中心可預約試聽外,也可在PChome商城、台哥大myfone商城、樂齡網等輔具通路販售。 另一款為針對輕度到重度聽損者設計的Classic R助聽器,於2021年獲得日本Good Design設計獎,這款產品自去年底上市,對於先天性聽損者具有吸引力,用過的人都說在吵雜的環境下也能比過去聽得更清楚,也感受到藍牙連接手機通話、看影片的便利。預估此一商品也將在今年下半年外銷海外市場。 此外,今年6月即將上市的助聽器藍牙功能二合一功能產品,大小就如同一般藍牙耳機,主力客群鎖定在意外觀的聽損者,一方面體積較小、無線耳機造型設計美觀,加上也可接聽電話,若經衛福部許可上市之後,符合資格的聽損者還可以向政府申請補助。 RelaJet下一階段將進軍海外市場 以美國為灘頭堡 有趣的一個問題是,因應疫情關係,全民都必須配戴口罩,無法讀唇語,此對聽損者的影響是如何呢陳宥任表示,此時就能凸顯RelaJat的優勢了。由於每位聽損者聽力強弱不同,助聽器僅能補充到適當音量,協助聽損者聽取6-7成內容,餘3成仍須仰賴讀嘴唇及手勢。而在疫情期間,為了防疫,人人都戴口罩,口罩也讓聲音有所遮蔽,RelaJat人聲分離引擎也能校正補強,使戴口罩者的聲音分離清晰,方便聽損者辨識。 除了台灣市場之外,RelaJet下一階段將進軍海外市場,預計今2022年將取得ISO 13485醫材品質管理系統認證及美國醫療器材許可證,以美國為灘頭堡,以自有品牌或是成品貼牌方式銷售海外。 除了台灣市場之外,RelaJet住輔聽器下一階段將進軍美國市場

【解決方案】小柿智檢 以「AOIAI」雙劍合璧,軟加硬體千錘百鍊 打通外觀瑕疵檢測任督二脈
小柿智檢 以「AOI+AI」雙劍合璧,軟加硬體千錘百鍊 打通外觀瑕疵檢測任督二脈

品質檢測,如雙刃劍一直是台灣製造業者又愛又痛的課題。當AI深度學習進入傳統製造業的工業視覺檢測中,不僅可節省檢測人力投入、解決人工目視標準不一,克服傳統自動光學檢測AOI有限的視覺辨認及瑕疵檢測盲點,更能即時溯源品質問題成因。小柿智檢研發的AIAOI視覺檢測整體解決方案,融合軟體與硬體創造高效外觀瑕疵檢測能力,幫助電子代工客戶創造低於1漏檢率及少於3過殺率的高效品檢水準。 成立於2020年的小柿智檢,雖然是兩年的新創但並非從零開始,創辦人暨執行長洪沛駿與核心團隊曾深入富士康工廠多年,參與無數智慧工廠相關解決方案與製程改善,擁有深厚的AI深度學習開發能量,並累積世界級AI應用落地豐富經驗。看見AI工業檢測必定是製造業邁向工業40的最後一哩路,洪沛駿毅然決定將AI深度學習技術落地於產值高的智慧製造領域,並專精投入在AI工業視覺檢測開發。 對於製造業而言,產品檢測是所有品管最重要的一環,但傳統工業檢測面臨2大主要痛點 1人工目視檢測:現今整體製造業95以上仍仰賴人工目視檢查,使得人工目視品檢標準難一致性,並對細微物件目視檢測時,如被動元件或高反光元件會造成長期視力傷害。2傳統AOI自動光學檢測:對產品有限的視覺辨認能力與瑕疵檢測盲點,而其中外觀瑕疵檢測如碰刮傷、油汙、髒汙或毛絲等不可預期的細微瑕疵問題,也是AOI應用中一直無法克服的難關。 AIAOI視覺檢測整體解決方案 外觀瑕疵檢測的一大福音 當初在設計小柿智檢產品roadmap時,客群定位及強化客戶產品服務與價值是重要指標,更看見外觀瑕疵檢測一直是製造業未能解決的痛,洪沛駿表示。小柿智檢以工業品檢AI軟體為核心,提供AIAOI視覺檢測整體解決方案,主推三大產品,包含「QVI-T AI深度學習檢測建模平台軟體」、「AI六面瑕疵檢測篩選機」及「AI工業品檢平台」。主要服務客群以產能高、毛利率高的半導體封測、EMS電子代工、小金屬件加工等產業為主。針對客戶需求,小柿智檢提供對應的軟硬體服務,結合自主開發的AI深度學習軟體與硬體品檢設備,減輕產線人工目視負擔,有效提升工廠的生產品質。 為了幫助設備商及有開發能力技術工程師精準掌握產品外觀瑕疵檢測,小柿智檢自主開發QVI-T深度學習檢測軟體,可提供客戶瑕疵定位、瑕疵分類、瑕疵分割、異常檢測以及文字辨識等重點功能,有別傳統套軟體的固定的檢測法,可以根據不同產業檢測方式精進演算法,開發不同API以串接不同鏡頭的設備。此平台軟體設計非常輕量,架構在公有雲私有雲的SaaS軟體,主要是單純圖片上傳、做標記、訓練建模、驗證測試,完畢後提供使用者下載模型、SDK、API和報告,可有效幫助客戶達到AI推論功能。 目前市面工業檢測服務,以傳統AOI軟體工業檢測機居多,僅能解決產品輪廓量測如扣件的頭、長度等,無法真正提供細微商品表面瑕疵檢測如螺絲頭裂痕及牙傷,而市場上正缺少這種高精密瑕疵檢測業者,洪沛駿觀察。小柿智檢開發自主打造「AI六面瑕疵檢測篩選專用機」從過去客製化服務到現階段提供客戶標準化服務,提供扣件類在量測和表面瑕疵一次解決的標準化檢測服務,以及被動元件類產品高速表面瑕疵檢測。此專業機運用小柿智檢自主研發的AI深度學習AOI複合算法技術,透過可平行運算技術,可實現模型推論達3毫秒張,及實現被動元件之電極與本體多重複雜瑕疵檢出,此專業機主要落地於從扣件類、小金屬件到被動元件之檢測。 業界競爭力方面,AI六面瑕疵檢測篩選專業機提供的軟體硬體整合是小柿智檢重要核心競爭優勢,並非字面如此簡單,洪沛駿有感而發表示,此專機在工業檢測行業俗稱光學機構、電控、軟體及算法等領域高度集成整合,過程中需要不斷優化疊代,並需多次去客戶端驗證與修改,經長期千錘百鍊後,技術門檻也因此拉高。AI六面瑕疵檢測篩選專業機將是小柿智檢未來3-5年主力產品推動方向,相信AI結合量測技術和表面瑕疵檢測會是小柿智檢重要的核心競爭力來源,洪沛駿表示。 AI六面瑕疵檢測篩選專業機將是小柿智檢未來3-5年主力產品推方向 面對智慧工廠工業40蓬勃發展,常收到客戶詢問「品檢的數據是否有二次使用價值」,洪沛駿表示,小柿智檢推出的「AI工業品檢平台」具備機器學習機制,可藉由品檢數據二次使用,提供客戶生產品質即時監控預警、品質溯源分析、品質因子評估、製程參數預測與推薦多項功能。以成功導入汽車零組件廠為例,透AI工業品檢平台提供的製程參數預測與推薦,當我們知道產品瑕疵,依過去老師傅經驗建成一套model,再加上前段過來的接網數據,整合後我們有製程數據、來料數據、品檢數據之後,我們可以去預測這些機台參數是否跑掉,我們就可以去推薦某幾段的製程參數是否調高或調低。透過AI工業品檢平台,小柿智檢能幫助客戶將視覺品檢結果、製程數據及驗收標準,跟客戶工廠既有的MES系統對接,以提升生產品質,改善效率,降低成本。 在商業模式方面,小柿智檢在深度學習檢測建模平台軟體也提供軟體訂閱制,提供公有雲客戶以流量訂閱並依圖片上傳量進行收費,而使用私有雲客戶則採取每年授權金license收費機制。此外,公司也提供客戶在整體解決方案設備的買斷收費機制,並提供一年保固,之後每年收取耗材與軟體更新維護費。 反其道而行 軟硬兼施 小於1漏檢率15分鐘快速建模 面對製造業各樣少量多樣品檢需求,一般AI深度學習視覺檢測,通常要求客戶蒐集大量不良產品照片,既耗時標記,又造成客戶導入AI不順暢,不良品蒐集不到,導入周期長,落地充滿風險,不良樣品不夠始得模型不夠準。小柿智檢卻反其道而行,讓其產品「AI視覺檢測模型開發工具」透過客人提供的良品圖片進行訓練模型。讓AI學習良品相對容易,不需要標註,可快速壓縮時間完成建模。 以IPC電子業-研揚科技的落地應用為例,為了降低PCBA產線的品檢站人力投入並有標準化的品檢品質,小柿智檢提供PCBA AI視覺檢測軟硬體整體解決方案服務,並於工廠高自動化的流水線上進行in-line檢測,有效節省檢測人力投入,提升品檢率的標準化,改善人工目檢測造成標準不一問題。透過AI視覺檢測軟硬體整體解決方案導入,有效替客戶近兩年維持過殺率3以下,達到漏檢率小於1的高成效表現。另外,本方案提供不懂AI的從業人員可快速操作建模,透過安裝建模tool在設備上,當客戶有新的貨號需要建立模型時,僅須提供10張良品圖片在設備下掃描,只要15分鐘即可快速訓練建模。 在產品核心策略布局上,相較市場競爭對手單靠通用軟體服務搶佔所有製造業市場,但套用在工業檢測是行不通的,洪沛駿過去10年觀察,相信唯有軟體硬體才有技術門檻,並專注在一個行業與領域,採用標準化公司的AI六面瑕疵檢測篩選專用機才能夠複製與規模化,才能真正讓公司不斷邁向優化與創造產品競爭力,即使有其他競品想爭奪這塊餅也不容易,洪沛駿表示。 小柿智檢的AIAOI視覺檢測整體解決方案為客戶創造快速建模 和小於1漏檢率的優異成效 布局全球、最有競爭力的AIAOI整體解決方案商 對新創者而言,面對商務拓展,天天都是挑戰,洪沛駿表示,公司規模小容易被大公司搶單、公司人才被高薪挖腳,缺乏深厚客戶關係,業務團隊不夠龐大等。如何克服呢洪沛駿相信唯有勤能補拙、提供更好服務、更即時反饋、創造更專業的方案去說服客戶,才是新創公司致勝的關鍵和競爭力。 從2020年創業至今,小柿智檢在商品核心策略佈局上總是反其道而行的超越同業競爭市場,積極在AI視覺檢測軟硬體整體解決方案向下扎根。洪沛駿期許小柿智檢未來將成為提供電子行業、半導業全球最具競爭力的AIAOI整體方案商,並提供最頂尖的AIAOI專業機設備給電子行業、半導體業客戶群。洪沛駿表示目前公司的AI六面瑕疵檢測篩選專業機技術能量已達到國內頂尖水準。為加速專業機研發更標準化並銷售到海外市場,現階段公司將進行募資計畫,希望借助資策會等法人協助進行更多商業串接與募資管道。對於中長期目標,小柿智檢將布局全球市場包含大陸和東南亞國家,同時跟隨OEM大廠的國際腳步全球布局,並在目標檢測項目下,持續發展特色產品及邁向國際場域擴散。

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶