:::

【109年 解決方案】 AI養魚提高30%產量 省電效益5成

台灣素有「養蝦王國」之稱,然而,受到天氣劇烈變化及養殖經驗無法傳承等困境,使得養殖戶遇到不可測的風險逐漸升高。透過AIoT(人工智慧加上物聯網),寬緯科技啟動智慧養殖的風潮,提升傳統養殖價值的創新模式。

根據農委會統計,全台漁產產值約新台幣1000億元左右,其中600億元是遠洋漁業為主所貢獻的外銷產值,400億元是沿近海漁業及養殖漁業的產值,而佔地面積達到4萬公頃的養殖漁業,成為台灣從「鰻魚王國」、「養蝦王國」、「觀賞魚王國」到「吳郭魚王國」等過程中最強而有力的後盾。

然而,受到天氣劇烈變化影響,2018、2019兩年的冬季均是明顯的暖冬,平均氣溫創下72年最高,打亂了漁產的繁殖時序,嚴重影響產量。

AI養魚 降低30%成本提高30%產能

雖說漁夫也是「靠天吃飯」,卻能利用人工智慧的方式,提前預警,將風險降至最低。位於新竹的寬緯科技專注於物聯網系統開發與人工智慧演算法於水產養殖產業的智能應用,研發「水聚寶智慧養殖監測系統」及「智能設備控制系統」,協助業者即時取得水溫(Temp)、溶氧量(DO)、酸鹼值(PH)、氧化還原電位(ORP)、鹽度(Salinity)等數據;而加裝智能設備控制系統的用戶還可依水中溶氧自動啟動水車及設定自動投料,漁民只需透過手機APP即可隨時掌握狀況,提前防範、降低損失。透過科技養殖,有效降低成本,創造無限商機外,漁民可精準的監測及控制養殖水質及水產品的成長過程,所以能提供給消費者更安全的食物。

寬緯科技總經理蔡政勳表示,傳統漁民的作法是對於水質早晚各量一次,投放飼料也各憑經驗,此舉不僅耗時,也可能因為環境的劇烈變化或投料過多,對水質產生不利變因,「水聚寶智慧養殖監測系統」採取連續性的蒐集,每五分鐘蒐集一次資訊,一天蒐集的數據高達1,000個,一旦發生異常狀況,如飼料投入太多,造成水質混濁汙染,或是水溫偏高偏低等,透過APP傳輸給漁民,都能即時進行處理。

▲AI監控水質變化

寬緯科技總經理蔡政勳

▲寬緯科技總經理蔡政勳

蔡政勳表示,透過數據的監測,當數據在正常值範圍內,可以不用打水車或是投放飼料,以維持水質的穩定並降低成本,一般而言,養殖成本有一半是飼料,電費則占15%-20%。。根據成功大學「微藻生技與工程實驗室」羅泳中博士對於微藻飼料養蝦研究,導入「水聚寶智慧養殖監測系統」後發現,電費可節省近60%左右,加上飼料投入減少,整體可降低30%的養殖成本。

全台300池 導入水聚寶智慧養殖監測系統

而海洋大學研究也指出,科技化設備若再加上排污管等基礎建設,將可有效提升養殖漁獲30%的產能。對於漁民而言,智慧化養殖確實對提高收益有相當大的幫助。

養殖達人黃國良,在台南將軍養殖虱目魚已經是第三代,其獨創的養殖工法,即利用生態平衡的友善養殖,即利用智慧養殖監控系統,及早發現問題,同時透過遠端控制節能電箱,以達最大產能,節省成本。蔡政勳表示,水聚寶利用太陽能發電,每5分鐘回報魚塭池水數據,以龍膽石斑為例,至少要養三年,大約20台斤才能賣,水溫以16度為警戒,若低溫來襲,溫度低於10度以下,龍膽石斑就會凍死,透過監控系統,就能提早預防,降低損失。

寬緯科技目前於全台養殖池導入多達300池,包括新竹、枋寮、花蓮、台東等,運用水聚寶所擁有的水質及環境遠端監控、智慧節能、自動餵食、自動建立產銷履歷等多項特色,可以讓每個養殖戶都能依照自己的養殖習慣,記錄養殖數據與養殖過程,還能選擇自行手動控制或由AI協助及時預警,還能遠端視訊連線監看案場,讓水聚寶水產養殖物聯網系統能夠更接地氣。

水質監測設備

▲水質監測設備

▲看天吃飯的漁民,可透過AI監控系統掌握養殖池水質

本身就是台灣人工智慧學校新竹分會經理人班第一期,同時擔任台灣人工智慧學校校友會副會長的蔡政勳,對於人工智慧的研究非常投入,未來將持續優化數據,提出更多的應用。寬緯科技也獲得英特爾對台灣物聯網成熟解決方案的認證,是亞州少數取得認證的企業之一,他表示,運用雲端、大數據物聯網、AI人工智慧的技術及設備,以科學化的數據管理,加上持續建檔的大數據資料及AI演算,可快速發掘潛在風險,有效避免及減少養殖損失。

寬緯科技展場,副總統當選人賴清德(左二)也前往加油打氣

▲寬緯科技展場,副總統當選人賴清德(左二)也前往加油打氣

推薦案例

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶

【解決方案】AI電眼取代人眼 慧演智能運用AI幫製造業做品管
AI電眼取代人眼 慧演智能運用AI幫製造業做品管

因應製造業少量多樣的客戶需求,亟待可以找到從雲端到終端的AI解決方案。慧演智能提供軟硬整合解決方案-BailAI影像檢測解決方案,來協助傳統製造業提升製程效率及產品品質,達到轉型的初步目標。 政府宣示2017年為台灣「AI元年」之後,台灣AI新創公司如春筍般林立,成立於2018年的慧演智能即鎖定智慧製造,提供AI影像分析與流程優化的平台,以深度學習的方式檢測產品的瑕疵和組裝的步驟異常,協助企業建置從終端到雲端的基礎設施,讓工廠生產端可以自動化監控,以提升製程的效率和品質。 熟悉產線品管流程 以AI影像檢測作為創業主軸 慧演智能創辦人暨執行長劉雅雯年紀輕輕,在大學畢業之後即進入製造業,在硬碟零件的塑膠射出製程擔任品管職務,「當時已經在產線上,對於生產機台的產線流程相當熟悉」,她之後轉換跑道擔任行銷企劃、接著又擔任過AI產品經理,在時機成熟之後,劉雅雯決定創業,以製造業的AI影像辨識作為創業主軸。 「企業的困難在於缺乏AI開發團隊,即使有了AI團隊,開發專案要花很多時間,至少6-12個月」深諳市場痛點的劉雅雯表示,平台要解決的問題是提供傳統製造業不需要程式開發背景的員工,也可以自行打造AI模型的平台,從遠端協助產線的故障排除及後續的系統維護作業,來幫助企業節省開發時間及人力成本。 BailAI影像檢測平台使用場景 面對市場上提供AI影像辨識的競爭對手非常多,慧演智能的技術優勢何在劉雅雯表示,現階段許多企業備有AOI光學檢測設備,但AOI光學檢測在應用上的瓶頸是,只能用於產線速度快、數量多的瑕疵檢測,而每回檢測或生產都要重新調整參數。而根據她對產業的了解,受限於AOI設備動輒上百萬元台幣起跳,大部分中小型傳統製造業,並不具備雄厚的財力,但他們又想要做自動化檢測,這就是慧演智能的機會。 劉雅雯接著表示,傳統製造業不可能養一個包括AI工程師、資料工程師、雲端架構師、終端架構工程師等專業人才的技術團隊,而慧演智能擅長於軟硬體整合,企業透過BailAI影像檢測平台,就能輕鬆解決產線上的檢測問題。換言之,客戶只需提供影像或樣品,交由慧演智能訓練模型、部署模型及系統整合,即可輕鬆使用AI技術進行產線流程優化及監測。 參加AI新銳選拔賽 組裝行為影像辨識辨識率達9成以上 舉例而言,某家連接器廠商,技術團隊只有1-2位AI工程師。主要解決的問題是,大部分作業員都在產線上,而品管及高階主管在遠端,公司欲透過遠端監控方式掌握產線實際情況。慧演智能透過工業相機拍攝產線畫面,並將AI影像分析傳送到遠端,主管及品管人員可以透過螢幕來觀察產線組裝有無錯誤,如連接器頭跟線路有沒有接好等問題。 慧演智能的AI影像檢測架在微軟的Azure雲端平台上進行作業,也會透過終端設備,如NVIDIA的邊緣運算設備放置於檢測站周邊,透過雲端到終端的整合解決方案,協助傳統製造業提升產線效能與及早發現問題。現階段慧演智能的客群包括航空、電子周邊、連接器及金屬等相關產業。 組裝產線人體行為辨識組裝流程解決方案,準確率達9成以上 為了實證技術深度,慧演智能參加經濟部工業局2021年AI新銳選拔賽活動,為光寶科技提供「組裝產線人體行為辨識組裝流程」解決方案,透過相機及AI影像辨識的方式辨識產線作業員的有效工時及無效工時,也就是透過影像辨識手的姿勢及位置,來判斷作業員的組裝行為,其精準率可達9成以上。 劉雅雯補充說明,由於電子零組件組裝工序較複雜,多以人力為主,無法以機械手臂取代,因此慧演智能在光寶的組裝站裡,用鏡頭拍下作業員組裝的流程,再針對影片進行演算法的訓練、校正,最終訓練出的模型能直接判斷組裝過程是否出現任何錯誤,以改善整體流程。 導入BailAI影像檢測平台 專案開發時間可望縮短至1個月 成立三年多以來,慧演智能累積不少專案經驗,希望能將專案經驗產品化,劉雅雯指出,將於今2022年完成BailAI影像檢測試用版,客戶可依檢測物件的精細度選擇工業相機、視訊相機,甚至於X光來擷取影像,再透過平台做影像自動標記,慧演智能會提供符合場域的AI應用模型,供客戶使用,也可以在雲端終端做推論,便於製造業上線使用。包括金屬產業、工業電腦的金屬機殼、連接器、電子周邊,機械零件,皆可利用平台進行瑕疵檢測及物件辨識。 現階段慧演智能將持續提升技術能力,累積客戶的經驗完成產品化,同時加速AI檢測落地應用,中期將建置終端雲端基礎設施,將企業AI專案開發時間從6-12個月縮短至1個月,降低企業使用時間及使用門檻。長期目標將鎖定台商聚集較多的東南亞市場,將軟硬整合AI解決方案拓展到海外市場,擴大營運規模。

這是一張圖片。 This is a picture.
比客戶更了解客戶 疫情引發商機 偲倢科技業績翻倍

「COVID-19疫情之後,雖然無法出國,海外業務拓展受阻,然而,受惠於疫情之後,AI視覺光學檢測AOI需求高漲,帶動另一波業績的高速成長」,偲倢科技創辦人兼總經理陳青煒表示,公司在視覺瑕疵檢測的起步比較早,累積豐富經驗,使得2021年業績較前一年大幅翻升數倍之多。偲倢科技AI技術前景深具潛力,募資計畫也成功先後獲得工業電腦龍頭企業等策略投資人青睞。 成立於2015年底的偲倢科技,創立之初即以開發自動化軟體出發,協助客戶降低自動化門檻。2017年至2018年短短兩年間,AI技術發展快速起飛,當時陳青煒觀察到在製造業自動化的過程中,產品瑕疵檢測是一個令企業相當頭疼的痛點,傳統作法用人工目檢耗時費力,且容易造成人為疏失,AI部署無法客製化,導致企業投入成本高昂。 搶攻AOI市場 AI光學瑕疵檢測成為成功落地應用項目 「AOI的缺口是瑕疵檢測,由於瑕疵無法明確定義,為符合客戶不能將有瑕疵的不良品流出去的需求,往往將良品打成不良品,導致過殺率往往很高,不僅墊高製造廠的成本,無形中造成資源的浪費」,加上因應產線人力不足的情況,製程自動化呼聲高,為陳青煒創造難得一見的商機。AI光學瑕疵檢測成為偲倢科技切入AI落地應用的重點。 累積近年在產線自動化的經驗,偲倢科技將客群鎖定在被動元件、連接器及半導體等三大產業,將蒐集的產線產品瑕疵資料建立成龐大數據庫,由於偲倢科技起步早,位居先行者的地位,持續將數據庫的資料進行優化,豐富的經驗對客戶的需求能很快掌握,收斂客戶的需求並提出解決方案。 偲倢科技運用視覺辨識、深度學習等技術,發展光學檢查AOI演算法,打造AI瑕疵檢測方案,準確率大於99。在具體效益方面,運用在半導體產業,過殺率可由平均5-8大幅降至不到3,而被動元件過殺率也可從5降至12,可為客戶省下近新台幣近3億元的支出,不僅減少人力資源浪費,更使得偲倢科技成為客戶永續智造的好幫手。 自2019年底爆發COVID-19疫情,改變全球生活及工作型態,疫情期間,由於避免人與人之間的頻繁接觸,製造業工廠自動化的需求大幅攀升,偲倢科技在業界做出好口碑,生意源源不斷上門,使得客戶數及營收翻倍成長。 致勝秘訣:跟著客戶腳步前進,永遠比客戶想得多 除了台灣之外,偲倢科技也將觸角延伸至中國及越南市場等台商聚集的市場,中國團隊預估從3、4人增加至10人,越南也希望有5人團隊貼近客戶進行服務。 「偲倢科技都是跟著客戶腳步走,客戶在哪裡,我們就在哪裡」,陳青煒接著表示,疫情雖然帶來AI自動檢測的另一波需求,但受到國境管制影響,出差不方便,海外市場部分需要駐地人員就近服務,包括諮詢診斷、AI導入、校調等,均需由專人服務。 偲倢的自動化軟體開發平台將已模組化的視覺檢測、運動控制、IO控制、AI分析等功能整合,再搭配人工智慧訓練軟體「AINavi」,一台散熱片檢測機即可完成多種檢測項目,且可持續訓練AI深度學習模型,進一步降低機台漏檢率並讓檢測質量更臻完善。藉由AINavi 與自動化整合已經可以滿足客戶需求的大部分功能,再依據不同業種,不同客戶的需求提供所需的小部分客製化服務,即可快速提供不同客戶所需的解決方案。nbsp 深獲策略投資人青睞 工業電腦企業、創投相繼投資 偲倢科技在製造業AIAOI檢測領域已闖出一片天,並受到策略投資人的青睞,2019年工業電腦龍頭企業策略性投資偲倢科技,將AINavi深度學習視覺檢測工具整合企業完善的硬體平台,雙方的合作結合出更完善的服務方案給客戶,創造「以大大廠帶小新創」的典範雙贏案例。 2022年2月偲倢募資再傳捷報,創投創新基金投資入股,原有大股東們也皆跟著再投資,偲倢科技順利完成Pre-A輪的募資,短期內將持續擴張業務,並在中國、越南站穩腳跟,未來計畫將建置包括被動元件、連接器及半導體產業領域的專家系統,深化領域知識及數據分析,為客戶創造更高的價值。 偲倢科技自詡為製造業的管顧公司,也就是透過顧問服務,診斷、導入、系統上線、人員訓練、模型優化、AI模型管理等,提供客戶最適切、最有價值的顧問服務。