:::

【109年 解決方案】 AI養魚提高30%產量 省電效益5成

台灣素有「養蝦王國」之稱,然而,受到天氣劇烈變化及養殖經驗無法傳承等困境,使得養殖戶遇到不可測的風險逐漸升高。透過AIoT(人工智慧加上物聯網),寬緯科技啟動智慧養殖的風潮,提升傳統養殖價值的創新模式。

根據農委會統計,全台漁產產值約新台幣1000億元左右,其中600億元是遠洋漁業為主所貢獻的外銷產值,400億元是沿近海漁業及養殖漁業的產值,而佔地面積達到4萬公頃的養殖漁業,成為台灣從「鰻魚王國」、「養蝦王國」、「觀賞魚王國」到「吳郭魚王國」等過程中最強而有力的後盾。

然而,受到天氣劇烈變化影響,2018、2019兩年的冬季均是明顯的暖冬,平均氣溫創下72年最高,打亂了漁產的繁殖時序,嚴重影響產量。

AI養魚 降低30%成本提高30%產能

雖說漁夫也是「靠天吃飯」,卻能利用人工智慧的方式,提前預警,將風險降至最低。位於新竹的寬緯科技專注於物聯網系統開發與人工智慧演算法於水產養殖產業的智能應用,研發「水聚寶智慧養殖監測系統」及「智能設備控制系統」,協助業者即時取得水溫(Temp)、溶氧量(DO)、酸鹼值(PH)、氧化還原電位(ORP)、鹽度(Salinity)等數據;而加裝智能設備控制系統的用戶還可依水中溶氧自動啟動水車及設定自動投料,漁民只需透過手機APP即可隨時掌握狀況,提前防範、降低損失。透過科技養殖,有效降低成本,創造無限商機外,漁民可精準的監測及控制養殖水質及水產品的成長過程,所以能提供給消費者更安全的食物。

寬緯科技總經理蔡政勳表示,傳統漁民的作法是對於水質早晚各量一次,投放飼料也各憑經驗,此舉不僅耗時,也可能因為環境的劇烈變化或投料過多,對水質產生不利變因,「水聚寶智慧養殖監測系統」採取連續性的蒐集,每五分鐘蒐集一次資訊,一天蒐集的數據高達1,000個,一旦發生異常狀況,如飼料投入太多,造成水質混濁汙染,或是水溫偏高偏低等,透過APP傳輸給漁民,都能即時進行處理。

▲AI監控水質變化

寬緯科技總經理蔡政勳

▲寬緯科技總經理蔡政勳

蔡政勳表示,透過數據的監測,當數據在正常值範圍內,可以不用打水車或是投放飼料,以維持水質的穩定並降低成本,一般而言,養殖成本有一半是飼料,電費則占15%-20%。。根據成功大學「微藻生技與工程實驗室」羅泳中博士對於微藻飼料養蝦研究,導入「水聚寶智慧養殖監測系統」後發現,電費可節省近60%左右,加上飼料投入減少,整體可降低30%的養殖成本。

全台300池 導入水聚寶智慧養殖監測系統

而海洋大學研究也指出,科技化設備若再加上排污管等基礎建設,將可有效提升養殖漁獲30%的產能。對於漁民而言,智慧化養殖確實對提高收益有相當大的幫助。

養殖達人黃國良,在台南將軍養殖虱目魚已經是第三代,其獨創的養殖工法,即利用生態平衡的友善養殖,即利用智慧養殖監控系統,及早發現問題,同時透過遠端控制節能電箱,以達最大產能,節省成本。蔡政勳表示,水聚寶利用太陽能發電,每5分鐘回報魚塭池水數據,以龍膽石斑為例,至少要養三年,大約20台斤才能賣,水溫以16度為警戒,若低溫來襲,溫度低於10度以下,龍膽石斑就會凍死,透過監控系統,就能提早預防,降低損失。

寬緯科技目前於全台養殖池導入多達300池,包括新竹、枋寮、花蓮、台東等,運用水聚寶所擁有的水質及環境遠端監控、智慧節能、自動餵食、自動建立產銷履歷等多項特色,可以讓每個養殖戶都能依照自己的養殖習慣,記錄養殖數據與養殖過程,還能選擇自行手動控制或由AI協助及時預警,還能遠端視訊連線監看案場,讓水聚寶水產養殖物聯網系統能夠更接地氣。

水質監測設備

▲水質監測設備

▲看天吃飯的漁民,可透過AI監控系統掌握養殖池水質

本身就是台灣人工智慧學校新竹分會經理人班第一期,同時擔任台灣人工智慧學校校友會副會長的蔡政勳,對於人工智慧的研究非常投入,未來將持續優化數據,提出更多的應用。寬緯科技也獲得英特爾對台灣物聯網成熟解決方案的認證,是亞州少數取得認證的企業之一,他表示,運用雲端、大數據物聯網、AI人工智慧的技術及設備,以科學化的數據管理,加上持續建檔的大數據資料及AI演算,可快速發掘潛在風險,有效避免及減少養殖損失。

寬緯科技展場,副總統當選人賴清德(左二)也前往加油打氣

▲寬緯科技展場,副總統當選人賴清德(左二)也前往加油打氣

推薦案例

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶

【解決方案】運用極現科技4D無人機雲端平台 巡檢成本降為五分之一
運用極現科技4D無人機雲端平台 巡檢成本降為五分之一

無人機執行智慧巡檢工作日益普及,大型石化廠及太陽能電廠也持續導入無人機應用。位於新竹的極現科技(earthbook)以自有技術建立4D雲端平台,提供無人機、軟體及數據分析平台服務,應用於太陽能電廠及石化廠執行智慧巡檢工作,總成本只有軟硬體購置等傳統做法的五分之一,時間更由一個月縮短至24小時左右,效益十分可觀。 對於長期處在高溫壓危險環境的石化業者而言,廠區設施的安全管控與巡檢是不可承受的重。「只要能提高石化業場內設施巡檢和風險辨識能力,資源的投入絕對不是問題」石化業者語重心長表示,面對廠區仰賴人力巡檢、龐大廠區空間、看不見的製程設施破損死角,導入無人機4D AI巡檢雲端平台將提升石化業者高效、安全的設施巡檢服務,更降低設備停機的風險發生。 成立於2018年3月的極現科技公司,已是國內創業競賽的常勝軍,包括2019年OPEN DATA創新商業實務戰冠軍、2020年並獲選進入微軟新創加速器、2021年獲選NVIDIA新創AI團隊,產品已上架微軟Azure平台,更獲得國發基金及國內大型集團投資,技術實力與服務深獲市場肯定。 擅長空間資訊處理及軟體技術的極現科技創辦人暨執行長徐偉城表示,在創業之初即承接國家太空中心衛星3D拍攝排程系統,深耕地理資訊整合成3D影像領域,隨著無人機硬體技術日益成熟,公司營運轉向無人機市場,並結合AI影像辨識系統,建立4D雲端DaaS平台,所提供的服務包括網路下單空拍服務DaaS、5GAIoT雲端平台SaaS及enterpriseAPI伺服器軟體等三項服務,以滿足無人機在智慧城市、設施巡檢、工程管理、災害應變、汙染監測等應用需求,將無人機服務的價值發揮最大化。 智慧空拍巡檢 定期追蹤 一眼望穿廠區設備健康狀態 台灣石化廠的數量和廠區面積龐大,缺乏足夠人力去執行整全性的設備巡檢,加上石化廠產生高溫易燃、腐蝕性的化學物質必須經由管線和儲存槽進行傳輸與儲存,長久以來可能造成管線破裂和儲存槽堵塞的風險危機,進而衍伸石化廠區嚴重的工安災害事故、設備停機及產能停滯發生。 觀察石化業者在設備巡檢的人員短缺,目前極限科技已導入無人機4D AI巡檢雲端平台結合AI影像辨識技術於石化廠區落地實證,透過無人機結合自主開發APP軟體服務操作,並連結現場空拍蒐集數據到雲端平台,達到石化廠設備管線、儲存槽巡檢全自動又即時性的空拍監控,更確保每次空拍執行任務時,總是能精準掌握指定巡檢物件的拍攝位置和角度,有效彌補過去廠區人力巡檢時人為監測的落差。 徐偉城指出,石化廠的巡檢無人機採用雙光鏡頭,一種是可見光,另一種為熱紅外線,可以透過溫度狀況來判斷管線異常阻塞,讓客戶從遠端就可在earthbook網站立即看到廠區巡檢狀態,提升客戶的巡檢效率與準確性。 4D空拍數據平台滿足智慧城市、交通、工程管理、汙染監測多元應用 DaaS網路即買即用 創新空拍商業模式可節省15成本 極現科技除了提供4D空拍數據平台,也提供DaaSDrone as a Service 服務,客戶可以在網站下單購買服務之後,極現協助媒合有專業證照的空拍人員到現場服務,客戶可透過平台掌握實際操作情況,並可迅速取得空拍數據,並研判是否有異常情況,能隨時預警。 以太陽能電廠監測服務為例,因太陽能電廠廠區面積大分布廣,又位於偏僻的屏東,而客戶總部在台北,對於屏東的電廠巡檢,客戶只要透過DaaS服務模式,直接網路下訂單並上傳屏東廠區的地圖,等客戶取得報價後,公司就委託當地屏東飛手去現場執行太陽能電廠空拍巡檢服務,過程中無人機的路線皆由AI自動計算好航線規劃,並將空拍數據傳輸到客戶雲端帳號,在台北總部的客戶就可在earthbook的網站即時看到太陽能電廠巡檢狀況如太陽能面板髒污狀況、灰塵偵測或太陽能電磁異常發熱等,有效幫助客戶大幅降低人事執行成本,高效率完成太陽能電廠巡檢服務。 導入石化廠的DaaS網路下單空拍服務 根據估算,太陽能發電廠客戶以自購或委託外界進行無人機拍攝居多而造成人事成本過高。在極現科技長期提供客戶空拍機和DaaS商業模式服務下,可為客戶節省45空拍成本,同時讓客戶於空拍24小時候後取得空拍巡檢報告,加速協助客戶高效率判斷太陽能面板異常問題。 期許成為最大空拍數據服務公司 將進軍東南亞市場 從2018年創立至今,極現科技即以創新思維在空拍市場快速成長,積極拓展空拍數據應用服務,現階段除了努力經營台灣市場外,將進軍東南亞國家,首站選擇在基礎建設需求量大的印尼。徐偉城期許earthbook成為全球最大的空拍數據服務平台,除了剛完成國發基金及大型集團的首輪募資外,為了跨足國際市場,一方面不斷精進無人機的數據服務及AI技術創新,另一方面,也需要法人如資策會的協助,尋找到對公司有互補的策略性投資人,分階段完成成為跨國空拍數據公司的目標。 極現科技創辦人暨執行長徐偉城

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
1 秒鐘完成結帳動作 Viscovery AI 影像辨識助攻智慧零售

近年來,人工智慧 Artificial Intelligence,簡稱 AI 已逐漸改變各行各業的運作模式,不過,絕大部分的工作仍然是由人類完成,AI 則扮演輔助的角色,因而出現了「AI Copilot」一詞,代表「由 AI 驅動的工具或助理」,旨在協助使用者完成各種任務,提高生產力和效率。 AI Copilot 的概念源自於「副駕駛」這個角色,在飛行中,副駕駛協助主駕駛員完成各項任務,確保飛行安全與效率。其實,工業革命的「機器」就開始有 Copilot 的影子,各種機器在不同領域中扮演「Copilot」的角色,輔助人類完成繁重的體力和重複性工作,大幅提升工廠生產效率,推動經濟快速發展。 隨著運算設備的進步、機器學習、深度學習、影像辨識等技術的突破,AI Copilot 的概念逐漸成形。AI Copilot 的發展標誌著從「機器輔助提升到智慧輔助的轉變」。早期的機器人只能完成預設的重複性工作,而現在的 AI Copilot 則能夠學習和適應新的環境與任務,並在實際應用中不斷優化自身表現。這一轉變不僅改變了人機交互的方式,也為各產業帶來了深遠的影響。 AI Copilot 的應用範圍涵蓋了各個行業,包括:金融、醫療、製造、教育、零售hellip等等,無處不在。 AI Copilot 於零售業的應用:AI 影像辨識結帳 在零售業,AI Copilot 的應用已經開始展現具體成果。 以 Viscovery 的 AI 影像辨識結帳系統為例,這套系統即為 AI Copilot 模式的一種,輔助店員加速結帳,或者輔助消費者簡化自助結帳流程。 nbsp 一般的結帳方式需要店員逐一掃描商品條碼,若是無條碼的商品,如:麵包、餐點,則需店員花時間先用肉眼確認品項,再一個個輸入到 POS 結帳系統中。根據一家連鎖麵包店實測,資深店員從「肉眼辨識」到「輸入一盤 6 顆麵包的商品資訊到結帳系統」的過程,就要 22 秒的時間,新進店員需要的時間可能更多。另外,根據一家日本麵包店業者分享,培訓員工認識、熟悉商品需要 1 至 2 個月的時間。 nbsp 現在有了 AI 影像辨識技術,店員可以把「辨識商品」的步驟交給 AI,由 AI 扮演 Copilot 的角色,1 秒內迅速辨識品項,加快結帳,整體節省 50 的結帳時間,優化顧客購物體驗。而培訓員工辨認麵包的時間成本,也能因此有效縮短。 nbsp 即便是帶有條碼的商品,AI 也可以在一秒內快速辨識多個品項,相比逐個掃條碼的方式,效率更高 nbsp 而有 AI 影像辨識「輔助」的自助結帳系統,則能夠讓消費者在沒有店員幫助的情況下,順利完成購物,省去刷條碼或在螢幕上查找品項的麻煩,提升購物體驗,在缺工、找不到店員的時代,也幫助店家降低營運成本。 nbsp AI 快速辨識多件結帳商品只要一秒鐘 圖片來源:Viscovery 近來,致力研發 AI 影像辨識結帳方案的新創在各國嶄露頭角,目前已知最輕量化的解決方案就在台灣,只要在結帳櫃檯安裝一支 Viscovery 的鏡頭與一台搭載 Viscovery AI 影像辨識軟體的平板,即可與店家既有的 POS 結帳系統串接,馬上啟用。 整合方式多元,有隨插即用的作法,也有與店家 POS 整合的 API 串接方案。 Viscovery AI 影像辨識系統可與店家現有的 POS 系統無痛整合 圖片來源:Viscovery AI 影像辨識結帳的導入實例 目前 Viscovery AI 影像辨識系統已導入台灣連鎖烘焙店、新加坡中式麵店、日本仙台百貨公司商辦超商 micormarket、日本麵包店與蛋糕店hellip等等。超過 700 萬筆交易筆數,都是透過這套 AI 系統完成,辨識超過 4000 萬件商品。這些使用案例展示了 Viscovery AI 影像辨識系統在零售行業的廣泛應用,未來將持續深耕、探索零售及餐飲運用 Vision AI 的各種可能。 nbsp Viscovery AI 影像辨識系統已導入日本、新加坡、台灣,使用於麵包店、蛋糕店、餐廳、便利商店等多個場域 圖片來源:Viscovery