:::

【109年 應用案例】 中小企業AI職能評鑑系統,大幅降低企業職能導入成本!

IBM的超級電腦 Watson,能夠預測員工何時打算離職,且準確度高達 95%,也為 IBM 每年節省了高達 3 億美元用於留住員工。另外透過雲端運算服務和現代化,IBM精簡了30%的人事成本,讓留下來的員工獲得更高的薪水,做著價值更高的工作。

而在台灣,要如何讓「讓留下來的員工獲得更高的薪水,做著價值更高的工作」呢?重點就在於每一個職位的「職能設定」,根據勞動部勞動力發展署所建立的「iCAP職能發展應用平台」所示,每一個職位都有其應具備的主要職責、工作任務、行為指標、工作產出、知識、技能及態度,唯有確立每一個職位的「職能」,企業才能夠根據職能有效應用在員工招募、教育訓練及績效管理上,否則不知道員工應該做什麼宛如瞎子摸象,將讓企業運作潛藏風險。

職能基準範例圖

▲職能基準範例圖

目前在「iCAP職能發展應用平台」中,建立的職能基準共有872種,其中由各部會完成的有553項,當中包括勞動部的253項及教育部的66項,如果企業想要建立屬於自己的「職能基準」,都需要到「iCAP職能發展應用平台」上來搜尋參考資料。假設企業想要招募有關「業務」的人員,但不知道「業務人員」應該做什麼事情,可以先到「iCAP職能發展應用平台」搜尋「業務人員」,如下圖所示。

於「iCAP職能發展應用平台」搜尋「業務」

▲於「iCAP職能發展應用平台」搜尋「業務」

可以看到共有18類業務人員,這時候企業就要根據本身需求,逐一點進去查詢、閱讀並整理成自己想要的「職能基準」;但如果我們改搜尋應該是每一間企業都會有的「總務」,其呈現結果如下圖所示,竟為0項。

於「iCAP職能發展應用平台」搜尋「總務」

▲於「iCAP職能發展應用平台」搜尋「總務」

由上可知,雖由勞動部勞動力發展署所建立的「iCAP職能發展應用平台」可解決部分職務的「職能基準」,但企業內部的分工方式各有不同,可能這個職務在「iCAP職能發展應用平台」上是搜尋不到的;其次,在中小企業中,幾乎存在的都是「多能工」,也就是許多職務的職責是在同一個員工身上,如:在30人以下的小型企業中,通常會計、總務、人事都是同一個人,這時如果要針對這個人建立職能基準,就要分開搜尋「會計」、「總務」及「人事」,然後再將這三種職務的職能基準予以整合,如此往往曠日廢時且成效不彰。

此「中小企業AI職能評鑑系統」希望讓「人能盡其才」,藉由導入AI更精準建立員工的職能基礎標準,並可隨時追蹤其職能表現。

職能模型皆由人工產生及修正曠日費時

國內某螺絲、螺帽、扣件等產品出口商所有的職能模型皆由人工產生及修正,在執行過程中曠日廢時,難以滿足企業因人員變動所需,如:先前喬邁企業有專職的「生管人員」,但在該人員離職後,此項工作需要由其他員工執行,因此其他員工的職能模型需要立即調整;又或者企業為了因應未來發展,須成立開發部門,但先前完全沒有人有相關經驗,不但不知道如何從內部選材,亦不了解在徵才網站上,要如何說明才能找自己真正想要尋找的人才。

除此之外,該公司執行長一直以來深為公司內部的績效管理而苦惱,由於欠缺可精準衡量員工表現的標準及制度,導致每一次的績效考核結果都無法正確反映員工的真實表現,形成考核盲點,也無法把真正需要被獎勵的員工找出來,因此,期望透過AI職能評鑑系統,馬上釐清開發部門所須具備之職能,以及如何進行招募跟績效考核,如此方能有效改善企業內部權責不清、考核不精準之痛,因此其助益實為顯著!

AI職能系統建立 X 深度學習

而此為期四個月的人資領域職能系統計畫,執行方向明確,但因導入解釋現象之模型如:Seq2Seq、Deep Keyphrase Generation、Tf-IDF關鍵字擷取演算法與PangRank的導入都是人資領域的新嘗試,過程中採用開源大數據架構進行自然語言處理,以完成 Word2Vector及index 並inverted index其目的爲關鍵字weight權重與關聯性建立。又因無法像影像資料以連續數字處理,必須由相關連的關鍵字如:技能、知識、職業別等進行特徵值簡化,大略說明基本步驟如下:

1. 建立Propagation 模型乃是採用Google 採用已久 LTR 混合 Pointwise 推薦引擎(2個月)

2. 建立Back Propagation 模型(2個月),調校 loss function之超參數

3. 調校 CF model之超參數

4. 建立人機協同機制取得更多資料餵養Model 5. 反覆以上步驟

而在開發職能模型的過程中,聯和趨動股份有限公司與微光國際資訊有限公司多次討論,認為職能間互有關連,在建立完成知識圖譜後,進一步將職能量表上傳至Neo4j圖形資料庫,在處理複雜的關係資料結構具有極好的效能。而目前已完成500件職能量表上傳至之Neo4j關係分析平台。

使用python進行wor2vector的自然語言分析

▲使用python進行wor2vector的自然語言分析

除了將一個職位用word2vector之後的tensor描述,找出此職位的知識圖譜樣貌,根據此知識圖譜,可以了解在不同職位之間的相關性,以及彼此之間維度的相似度表現。最後,就是用此知識圖譜來建立該公司的「職能模型」,並依照此職能模型進行深度學習的訓練。

AI職能評鑑系統介面

▲AI職能評鑑系統介面

未來,除了為公司建立自己的職能模型,也可開放給終端使用者,個人可藉由分析自己的職能表現,來了解自己轉職的可能性、市場的價值,也能知道應該補強的技能。公司若對應此知識圖譜,將來可開發跨產業產品。

1. 短期:依照政府公布職能量表(iCAP, iPAS),以自然語言與關鍵字模型拆解,配合非監督式學習建立「原生職能基礎單元模型」。

2. 中期:為企業量身訂做專屬的職能模型。依照既有「原生職能基礎單元模型」由專家以監督式學習,訓練個別企業之「分散式衍生職能模型」。

3. 長期:建立「強化學習」模型,導入員工職涯認知與規劃。

職能模型建議,媲美專業人力資源顧問

透過職能知識圖譜的非監督式動態學習,快速建立個別企業的職能模型,企業內部的人力資源人員或外部的專業人資顧問,便可以依據所產生之職能模型,進行人才招募、職能盤點、績效管理及教育訓練等面向的評估跟應用,並會依據公司現有職稱架構下,自動建議其需加強的職能,包括相關的知識、技能及態度等。透過持續性資料的導入跟訓練,系統會學習雇主對於該職業應有之模型的實際看法,並回饋至雲端職能量表中,以遷移學習完成知識圖譜的動態學習,未來其將可媲美專業人資顧問,藉此快速幫助許多跨領域或具多元化技術的企業進行員工職能培訓。

推薦案例

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇

綠能是未來趨勢,必帶動未來龐大商機。而風力發電是近年全球矚目綠色能源之一,將成為我國再生能源重要生力軍、幫助台灣發電量於2025年達到20的目標,以提高台灣能源自主性。隨著國內風力發電機風機組數量和電量逐年增長,如何讓儲電設備達到安全、長效性、充放電不易衰減和永續低碳又環保的技術能量顯得格外重要,同時風機設備本身的健康檢測、保養與維修也成為風場業者關注焦點。為滿足風場客戶需要,華鉬實業旗下綠能事業部門推出長效儲能的全釩液流電池電解液及風機AI預測性運維,提供100安全、長效性且可降低客戶初製成本的電力儲能設備,並透過AI預測性運維服務協助客戶降低發電度成本10,節省最多30維護保修成本。 華鉬實業成立於1998年,本業以提煉釩、鉬及稀有金屬元素等製品起家,並運用於高階鋼鐵、專業化工及特用化學品等行業,而釩更如同煉鋼的維他命可加值煉鋼的成效。其中釩、鉬相關製品為公司主力項目之一,公司看見100以釩元素為主的全釩液流電池在長效儲能上未來將是相當被看好的綠能技術主流,並且2010年以前政府已積極請法人如工研院在固態電池和全釩電池進行相關零組件材料投入研究,再加上經濟部期許再生能源在2025年發電量佔比達20目標並達15GW,基於上述考量,華鉬實業決定於2017年全力研究與投入自主開發的全釩液流電池電解液的技術開發,以藉此加速2025年再生能源的達標率。 華鉬公司指出「再生能源的電源較不穩定,而台灣本身缺乏鋰資源,在鋰電池製造上幾乎80-90電池芯必須倚賴國外採購,缺乏100國內自足自給的儲能資源與技術。」同樣地,對於本身沒有天然釩礦資源的台灣是如何克服呢 為此,華鉬實業利用獨創技術,透過石化業如中油煉油廠或台朔石化製程中的廢觸媒,其中有高達10釩離子成分可提煉出高價值的釩礦資源,藉此生產出台灣100自主自製的全釩液流電池電解液且不受資源影響,有效達到資源循環再利用。自2017起華鉬實業已成功打造出全釩液流電解液技術,並順利通過工研院和核研所及多家國際大廠的產品驗證。 台灣在儲電能量目標於2025年要達15GW,其電力分配包含500MW於台電的自動調頻系統、500MW於E-dReg及500MW於既有或新設的太陽能電廠,以太陽能電廠的用電使用為例,主要以下午4點到晚上10點用為民生用電尖峰時段,為此,能源局特別要求台電必須加強儲能設備的升級,也因此帶動市場上對全釩液流電池儲能系統設備的高度需求。另外,台灣在目前總儲備電能的建置與貢獻尚未達到100MW,距離2025年目標15GW儲電量仍差距15倍以上。 運用全釩液流電池 成功打造100安全、低碳環保又長效性儲能系統設備 相較於鋰電池的短效電力儲能,全釩液流電池的最大優勢為全球公認可長效性的儲備電能,可以長時間儲能達12小時,代表若充12小時電力,則可以釋放12小時電力。相較於一般儲能系統的計電方式也就是每日用電度數功率以千瓦為單位 x時間以小時為單位,對全釩液流電池而言,功率和小時數是各別設計,該功率又稱為電堆,是由金屬、高分子模、碳氈和石墨板等四種材料組成,而該用電時間改以電解液的量以立方體為單位來計算,因此當功率電推 x電解液的量我們每日運用全釩液流電池儲能的用電度數。 全釩液流電池儲能系統設備之產品特色方面,包含安全性、長效性、充放電不易衰減和永續低碳環保性等四大特色。全釩液流電池品質是100安全,由於電能是儲存在含釩的電解液中,能避免儲飽電的儲能系統造成任何易燃事故發生。在電池壽命上,相較於鋰電池的電池壽命短暫,全釩液流電池透過價數變化可高達20-25年以上電池壽命。對於儲能的充放電性能,不像鋰電池有一定充放電次數5000-600次,全釩液流電池的充放電次數是沒有限制性的。對於全球高度重視的零碳排放,不同於鋰電池有回收議題,全釩液流電池的電解液可永久使用,該電堆材料成分是環保的且可完全回收,以打造真正永續性又低碳環保的儲能系統。 陸域風機AI預測智慧運維 讓客戶降低發電度成本10 省下維護保修成本高達30 華鉬實業不只透過全釩液流電池儲能系統設備提高再生能源客戶長效儲電效能、協助客戶降低初置成本,更透過離岸與陸域風機AI智慧運維實證計畫在台電的陸域風場的場域實證,積極累積自家在AI預測性運維的技術經驗和能量。在經濟部工業局AI HUB計畫支持下,合作場域將以台電公司路域一期風場為主並提供6個月以上風機的智慧運轉數據進行分析。本次陸域風機的AI預測運維系統,採用機器學習方式,主要技術提供者來自英國British PetroleumBP石油集團的子公司ONYX Insight,該公司透過AI Hub分析軟體技術進行台電面臨的風機痛點分析,包含路域風機的發電量損失和陸域風機的關鍵零組件如齒輪箱、變槳軸承hellip在異常震動三維的振動頻率或異常溫度等狀態下進行損壞預測等報告產出。透過本次落地實證可有效協助台電降低發電度成本10,增加資產價值12,節省最多30維護保修成本。近三年ONYX Insight在全球已成功預測運維2萬台以上離岸或陸域風機,累積極高的AI模型準確率。相信透過與ONYX Insight建立的國際合作夥伴關係,將有效輔導並加速華鉬實業的綠能事業部在邁向成為風機AI預測性運維的獨立科技服務提供者之目標與布局。 與合作夥伴ONYX insight提供客戶AI預測運維系統,包含風機發電量損失與風機關鍵零組件之損壞預測 厚植國內風機運維的基礎 以台灣為基地 拓展到東南亞風場 離岸風機AI預測性運維未來在台灣將超過300億台幣的的市場產值,儲能市場在全球更是有千億美金以上的產值,在未來公司願景,華鉬實業期許能成為釩液流電池電解液及風機AI預測性運維的獨立技術服務提供者。而長期目標,透過累積豐厚技術及實績資本,在世界各地建立釩液流電池電解液之在地供應鏈,就近供應產業需求。

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI嘛會煮咖啡! 無人烘豆機靠AI 精準設點與培養忠實客群

你早上來杯咖啡了嗎 臺灣於過去十年以來,逐漸形成一股喝咖啡的文化風潮,隨著AI技術的精進,無人烘豆機也能靠AI精準設點,同時培養忠實客群,我們來看看,這是如何辦到的 根據國際咖啡組織 ICO 調查,國人一年喝掉約 285 億杯咖啡,臺灣咖啡市場規模上看 800 億元,且每年約有 20 成長。 臺灣近十年來,人手一杯的「喝咖啡」文化,已成為流行的代名詞,而「咖啡」甚至以65的高比例當選為國人平日最常選擇的飲品,其中重度咖啡愛好者的族群更願意花費更高的價錢去選購符合自身口味的咖啡豆來享用咖啡。近兩三年來,越來越多無人飲品販賣店於臺灣飲品市場上問市。 無人咖啡飲品店無法快速展店,主要受到兩大問題困擾,一是客流量與機器設點位置的合適性,往往仍需憑藉人力進行評估分析;二是如何精準打入中高階咖啡愛好者市場 AI解決無人烘豆機設點合適性與培養忠實客群兩大難題 為解決上述兩大問題,協助無人烘豆機能迅速打開市場,昇銳電子擬以透過導入AI 人流計數分析與AI 人臉陌生辨識,來針對無人烘豆機的設置地點進行人潮數量計算,且歸類消費者的性別及年齡,以進行更為精準的商情分析;並提供消費者對於烘焙咖啡生豆的多重選擇,期以給予專業的咖啡愛好者更客製化的服務與貼近其需求和個人口味的一包「高品質烘豆」。 自2018年起,無人販賣店的興起,無非是因為業主想減少不斷上漲的租金與人事成本的費用支出,但在店面設點的初期評估,卻仍需花費鐘點人力費以人眼計算客流量,但人非機器,難免會有計算來店消費者與道路上經過人潮的錯誤率,而無法做到精準的即時客流分析,或甚至經過一段試營運後才進行估算是否達到設點的營運效益,以上皆會造成錯失最佳撤掉設點位置的停損時機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,推出無人烘豆機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,與帶來「黑金」風潮的咖啡進行商機結合,並且抓住臺灣眾多咖啡行家喜歡親自至量販店耐心挑選符合自身口味的咖啡生豆與喜愛去高品質的研磨咖啡廳或連鎖咖啡店之消費習慣與特點,故誕生針對咖啡豆產地、品種、烘焙方式等提供選擇的第一台無人咖啡烘豆機之新創概念。 AI烘豆機提升客戶忠誠度與物料管理效率達20 針對無人烘豆機的精進開發,昇銳電子工程師搭載AI NVIDIA 開發平台於TCNNFacenet 的基礎上進行,透過AI 將關於性別及年齡搜集之數萬張的影像資料進行樣本訓練,以針對首次選購咖啡烘豆的消費者也能利用人臉陌生辨識來簡單地歸類,藉此取得消費者的信任並提升使用意願,並進而進行購買資訊紀錄及未來商品購買推薦以產出消費者購買行為分析,便可使業主參照消費者對於不同咖啡生豆的偏好度高低,作為未來物料準備數量之依據,以降低原物料轉運及庫存問題,並提升物料管理效率達20。 再者,業主可透過放置此無人烘豆機於選定之人流匯聚率高的地段內,便能透過攝影機捕捉人潮,並針對機台擺設位置的客源是否充足,進行對於經過人潮數量的計算,進而評估消費者佇足購買機率的高低,並於短時間內分析出是否需要將機台進行移設,並可更容易地瞄準出中高階咖啡愛好者所在的最佳設點位置。 而關於無人烘豆機有專業烘焙模式介面,其針對咖啡生豆的產地來源、品種、烘焙方式(淺中深焙)、入豆與出豆溫度、轉速溫度與目標溫度等跟溫度、風速和秒數相關之選擇,提供消費者多種選項以烘焙出符合自己愛好的客製化精品咖啡豆。而若過程中業者針對機台有要進行改善的需求,工程師能配合調整韌體參數,也能協助與業主的訂單系統進行整合。 服務人員簡述無人烘豆機的操作方式 「黑金」透過AI 可更深入至咖啡廳、科學園區、商業大樓 此一無人烘豆機針對咖啡行家的客群,不僅能設點於中高階咖啡廳,以烘製相較於在量販店購買更為客製化的咖啡豆,更能在製作完成一包咖啡豆時,即時提供給咖啡廳內專業的技術店員協助進行咖啡研磨與手沖,而剩餘的烘豆也能將其帶回家之後自己沖泡與享用。在這之中也為咖啡廳帶來了附加價值,其可更加了解消費客群對於咖啡豆的偏好程度,並能推出更能吸引顧客的飲品促銷活動與進行合適的備料管理。 而除了咖啡廳,無人烘豆機也能透過AI 人流計數分析,精準設點於科學園區與商業大樓裡或附近店面,以提供其有高度飲用咖啡需求的內部員工,於辦公室也能手工沖泡的優質咖啡豆。另外,更能推出實體會員制以隨時發起選購咖啡豆之促銷活動,或不定時提出支付優惠回饋,進而吸引到新客源與培養既有顧客的忠誠度和黏著度。 智慧無人烘豆機的操作介面