:::

【109年 應用案例】 靠30年水體顯微診斷及輔導經驗,發展廢水處理及水回收AI輔助功能診斷與即時監控系統,總體能耗及成本減量高達93%!

全台每年30億噸廢水,如何有效達到環保排放要求呢?

全台每年的廢水總量約31億多噸,其中工業廢水量約占34%,市鎮及畜牧廢水合計66%;而工業廢水中則約有87%需用生物處理;市鎮及畜牧廢水則全部需要用生物處理才能處理至國家放流水標準。也就是說全台總廢水量的96%水量,約每年30億噸的廢水需經過生物處理才可以達到環保要求。

雖有「專業診斷技術手冊」及「歸納性圖鑑」,但由於現場需有顯微鏡,且需有熟悉此技術之操作人員,而業界人力變化與流動又很快,導致技術不易落實到廢水處理操作現場……

位於水質水源保護區的豆製品工廠,該如何處理廢水,令人頭大!

專業診斷技術手冊及歸納性圖鑑為民國84年所出版,至今又累積更多的動態及靜態指標微生物影像,且業界人力變化與流動很快,技術不易落實到廢水處理操作現場。

地處偏僻的桃園大溪區水質水源保護區有間生產豆漿、豆腐等豆製品的食品工廠,生產後之廢水依規定必須先進行處理後,再全量回收至工廠作次級用水使用,但在落實上卻有技術性的困難……

自動監控系統+AI即時線上診斷+提供改善建議 =提升中小型企業工廠廢水處理專業性與穩定性  

以實際水樣做測試,直接進行影像辨識

▲以實際水樣做測試,直接進行影像辨識

影像轉到辨識電腦上,經只要幾秒便可立即辨識出此種指標微生物

▲影像轉到辨識電腦上,經只要幾秒便可立即辨識出此種指標微生物

許多工廠被法規要求,需達到零廢水排放,處理後的水需全部回收,且任何時候均不得排放,案廠之廢水處理負責操作維護人員非專業人員,且大多由製程人員兼任,所能投入之心力甚為有限,無法穩定處理。

為此,祥泰綠色科技有限公司縝密規劃設計流程,並使用陶瓷平板過濾的新技術,結合遠端監控及每週一次到現場取樣,取回樣本進行顯微觀察、拍照與診斷,但由於案場地處偏遠,交通時間上仍有許多耗費。

為解決此問題,祥泰綠色科技除建置「自動監控系統」外,更進行「AI即時線上診斷」,提供適切之改善建議,對於補足中小型企業工廠廢水處理專業上之不足及穩定性功能提升,有顯著幫助!

此種狀況也會發生在其他工廠,甚至海外的工廠,故進行跨領域合作研發,將可提升及帶動海內外之技術需求,發揮更大效益。

導入AI大幅降低廢水處理耗能與成本,將發揚至海外造福更多工廠!

導入AI技術後之廢水處理系統更穩定,處理後的水質更高品質,同時達到廢水處理、水回收及水體環境的改善,同時讓總體能耗及成本減量達93%。未來可加強推廣到海內外有設置廢水生物處理之工廠。

推薦案例

這是一張圖片。 This is a picture.
以植物生長箱為例 - 依影像建構電子設備程序標準化

近年來,全球氣候變遷和環境問題日益嚴重,對農業生產造成了巨大衝擊。傳統農業高度依賴天氣條件,面臨著作物品質不穩定、產量驟減、病蟲害難以控制等挑戰。特別是在台灣,農業生技業者和農民不斷遭受損失,亟需創新解決方案。同時,台灣植物工廠產業也面臨諸多困境:高昂的設備和人工成本、產業鏈不完整導致國際競爭力不足、企業間缺乏合作等問題制約了產業發展。此外,COVID-19疫情更凸顯了遠程監控和管理的重要性,傳統的人工巡檢和數據收集方式已無法滿足現代農業生產的需求。這些問題共同構成了智慧農業解決方案的迫切需求背景,推動了如台灣海博特等公司開發整合物聯網、雲計算和人工智能技術的創新項目。 海博特雲端數據整合分析平台 面對這些挑戰,農業領域亟需一套能夠精確控制生長環境、提高資源利用效率、實現遠程監控和智能管理的系統。現有的植物工廠設備往往需要整套更換,難以與舊有設備兼容,且感測器與攝影系統可能需要不同的操作界面,使用不便。因此,業界需要一種能夠靈活整合各種設備和技術的解決方案,既能提供實時監測和數據分析,又能根據植物生長狀況自動調節環境參數。這種需求不僅存在於台灣,也是全球智慧農業發展的趨勢。通過引入人工智能技術,可以建立更科學化的評量基準,優化生產流程,提高產量和品質,同時降低能源消耗和環境影響。此外,這種智能化的解決方案還能吸引更多年輕人參與農業生產,推動產業升級和可持續發展。總的來說,智慧農業解決方案的需求源於應對氣候變化、提高生產效率、降低成本、實現精準化管理的迫切要求,而這正是像台灣海博特這樣的公司所致力解決的問題。 台灣的植物工廠業者們正面臨著一系列嚴峻的挑戰,這些困難正逐漸侵蝕著他們的競爭力和生存空間。首先,高昂的設備和運營成本成為了他們最大的負擔。每一次電費賬單的到來都像是一次沉重的打擊,迫使他們在保證產品品質和控制成本之間艱難平衡。其次,氣候變遷帶來的不可預測性成為了他們的噩夢。突如其來的極端天氣事件可能在短時間內摧毀他們精心培育的作物,造成巨大的經濟損失。更糟糕的是,他們發現自己在國際市場競爭中日漸處於劣勢。相比之下,國外的大型植物工廠憑藉先進的自動化技術和完善的供應鏈,能夠以更低的成本生產出品質穩定的農產品,這讓台灣的業者們感到前所未有的壓力。 在技術層面上,他們同樣面臨著諸多問題。新舊設備的兼容性問題常常讓他們陷入困境,嘗試整合不同系統時總是遭遇各種技術障礙。缺乏精確的數據分析和預測能力也讓他們在生產決策上舉步維艱,難以準確把握每種作物的最佳生長條件。現有的監測系統提供的數據往往雜亂無章,難以解讀和應用。人力資源方面的挑戰同樣嚴峻,年輕人普遍對農業工作缺乏興趣,導致他們難以招募到具備現代農業技能的員工。即便是現有的員工,也常常因為繁瑣的手動操作和監控工作而感到疲憊不堪。這些問題交織在一起,形成了一個複雜的困境,讓植物工廠業者們感到既困惑又焦慮。他們迫切需要一個能夠全面提升工廠運營效率、降低成本、提高產品競爭力的綜合解決方案,以助他們渡過難關,重新在激烈的市場競爭中站穩腳跟。 在面對植物工廠業者的種種挑戰時,台灣海博特公司展現了卓越的技術創新能力和靈活的客戶導向開發策略。他們深刻理解到,解決方案必須能夠無縫整合現有設備,同時提供高度智能化的管理功能。為此,海博特的研發團隊採取了模組化設計的方法,開發出一套可以靈活配置的IoT(物聯網)系統。這個系統的核心是一個智能控制中樞,能夠與各種感測器和執行設備進行通信。在開發過程中,海博特密切與客戶合作,深入了解他們的具體需求和運營環境。他們甚至派遣工程師駐場,實地觀察植物工廠的日常運作,以確保開發的系統能夠真正解決實際問題。這種深度合作不僅幫助海博特優化了產品設計,還建立了與客戶的緊密關係,為後續的持續改進奠定了基礎。 海博特的創新不僅體現在硬件設計上,更體現在他們開發的智能軟體系統中。這套系統整合了先進的機器學習算法,能夠根據大量歷史數據和實時監測信息,對植物生長狀況進行精確預測和優化控制。為了幫助客戶克服技術障礙,海博特設計了一個直觀易用的用戶界面,即使是非技術背景的操作人員也能輕鬆掌握。此外,他們還提供全面的培訓和技術支持服務,確保客戶能夠充分利用系統的所有功能。在遇到難題時,海博特的技術團隊能夠通過遠程診斷迅速識別問題,並提供解決方案。在一次客戶遇到嚴重設備故障的緊急情況下,海博特的工程師通過系統遠程接入,成功指導客戶進行修復,避免了可能的巨大損失。這種全方位的服務不僅解決了客戶的即時困難,更增強了他們對智能化管理的信心,推動了整個行業向更高效、更可持續的方向發展。 海博特公司開發的智慧農業解決方案不僅為植物工廠帶來了革命性的變革,更為整個農業產業的未來描繪了一幅令人振奮的藍圖。這套系統的優越性體現在多個方面:首先,它實現了對植物生長環境的精準控制,大幅提高了作物產量和品質的穩定性。通過先進的人工智能算法,系統能夠根據歷史數據和實時監測信息,預測並調整最佳生長條件,使得每一株植物都能在最理想的環境中生長。其次,它顯著降低了能源消耗和運營成本,提高了資源利用效率。智能化的管理系統能夠優化用水、用電和養分供應,減少浪費,同時降低人力成本。此外,系統的模組化設計和強大的兼容性,使得它能夠輕鬆整合各種新舊設備,為植物工廠的逐步升級提供了靈活的解決方案。最重要的是,這套系統為農業生產注入了科技感和現代化氛圍,有助於吸引年輕一代加入農業領域,為行業注入新的活力。 展望未來,海博特的智慧農業系統具有廣闊的應用前景和擴展潛力。除了植物工廠,這套系統還可以應用於傳統溫室種植、都市農業、甚至是家庭園藝。在水產養殖領域,相似的技術可以用於監控和優化魚類或蝦類的養殖環境。在食品加工業,類似的智能監控和預測系統可以用於優化生產流程,提高食品安全性。甚至在製藥行業,這種精準控制的環境管理系統也可以應用於藥物研發和生產過程。為了進一步推廣這套系統,海博特可以採取多管齊下的策略。首先,可以與農業院校和研究機構合作,建立示範基地,讓更多人親身體驗智慧農業的優勢。其次,可以開發針對不同規模和類型農業生產的定制化解決方案,擴大產品的適用範圍。再者,可以通過舉辦行業論壇、線上研討會等方式,分享成功案例,提高業界對智慧農業的認知和接受度。最後,還可以探索與政府部門合作,將這套系統納入農業現代化和可持續發展的政策支持範疇,從而在更大範圍內推動智慧農業的普及。通過這些努力,海博特不僅可以擴大自身的市場份額,更能為全球農業的可持續發展做出重要貢獻,真正實現科技賦能農業的願景。

這是一張圖片。 This is a picture.
測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度

臺灣堪稱製造業大國,然而,在產線上,品質瑕疵檢測一直是製造業長期痛點,雖然有AOI設備可輔助,但大多採用固定式機器,受限於角度,診斷不夠精準,誤判率也高。海量數位工程公司導入AOI機器智能手臂檢測系統,可有效降低誤判率,提高瑕疵檢測精準度。 一般來說,產品的良率攸關企業的成本與客戶的退貨率,而製造產業品質瑕疵的檢測流程,往往需要編制大量的品質檢測人力。目前製造業檢測工具雖然有AOI設備來輔助進行,但這些設備多半採用固定式的檢測機器,固定式相機容易受限於角度,導致診斷不夠精準,誤判率太高等缺點,因此,人員在後端需要再次篩選檢驗,也就是複檢,通常人工目測檢視的瑕疵漏檢率平均在5上,甚至可高達20。 製造業品質檢測三大痛點 機器手臂AOI之動態多角度品檢協助解決 根據海量數位工程實際了解製造業在檢測產品品質有三大痛點: 痛點一、人力檢測產品品質出錯率高 目前製造業多以人力來檢測產品外觀,但人工判斷多半有誤差,例如:表面刮傷、色差、焊道外觀hellip等,瑕疵判斷出錯率高,且須待成品階段才能一次性檢驗,時常出貨前全檢後依然遭整批退件,導致重製及人力成本大增。 痛點二、品質檢測之數據無法量化與記錄 傳統人力檢測無法保留檢測數據,嗣後發生品質糾紛時,責任難以釐清。而海外品牌高階代工單往往要求溯源與相對應的缺點紀錄,傳統產業原有之人力檢測難以符合更高階代工單之要求。 痛點三、傳統AOI視覺檢測的限制 現有製造業常用的AOI視覺檢測系統,因為視覺軟體技術的限制,都是以固定相機、固定光源及單一角度的方式來進行,這種方式對於平面或形狀由直線組成之產品例如:長方體或正方體的單一檢測點尚可處理,但對於複雜形狀的產品例如:汽車零件多為不規則狀多點、多幅度的檢測,就較難實現。 海量數位工程研發AOI機器智能手臂檢測系統,有效提高瑕疵檢測精準度。 為解決製造業在品質檢測的痛點,海量數位工程決定從研發多角度、可移動式的檢測儀器開始發想,從結合工廠自動化領域中的兩大代表性技術-機器手臂與機器視覺著手。海量數位工程以機器手臂結合AOI之動態多角度AI視覺即時品質檢測方式,改善固定式檢測受限多角度的問題,視覺檢測技術的提升與結合人工智慧,進一步相機取得的影像資訊可由平面取樣提升至多角度、多維度取樣。 選定汽車產業做為實證場域 可快速回應顧客需求 AOI機器智能手臂檢測系統,所運用的AI技術包括無監督學習(unsupervised)、監督式學習Supervised learning、半監督式學習Semi-supervised Learing,使業者在初期樣本不齊全,或是沒有不良樣本的情況下也能使用無監督深度學習技術學習良品,並應用在汽車三角架自動焊接的視覺檢測上。可解決導入前受限於固定式機器的角度、診斷不夠精準、誤判率高的問題。 汽車零組件單價較高,會要求更嚴格的瑕疵檢測正確率。 在導入AI服務的產業中,選定汽車製造業作為實證場域。海量數位工程表示,汽車製造業主要為相關零組件製造商,而且通常元件單價較高,需更多品質檢測品質及良率,會要求更嚴格的正確率,因此選定汽車業做為導入的場域。 機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統,除了可以改善汽車零組件檢測瑕疵品質失誤率外,因為以多角度的機器手臂AOI服務來提升定點式AOI光學檢測,可以符合多數產業之量測需求;最後是建立第三方系統平台,建置共同工作整合平台監測系統,以便在問題發生時,第一時間接收訊息並著手處理。 本系統可針對出廠產品之重要數據進行記錄儲存,為實現未來數位生產線與虛擬生產之基礎。同時於瑕疵發生時,可即時串接海量MES監控系統,迅速反應至相關製造決策部門,嗣後並利用ERP系統進行專案管理與檢討,有效精進其生產效率,降低生產成本。 有助降低溝通成本 期許成為行業標配 就產業上下游整合而言,可以為上下游之數據連貫提供一基礎之標準,降低供應鏈之溝通成本,經由指標代工廠與品牌商的認證,有機會成為該產業之行業標準配置。 透過此一計畫的產出數據資料庫建置,業者進一步透過大數據分析Data Analysis,優化供應鏈管理的解決方案「供應鏈規畫Supply Chain Planning, SCP」,依據數據,建立預測計畫,並運用科技串連供應鏈上下游的數據,精準控制產品品質。未來對接歐美、日,需要品質精細訂單,業者能更快速回應及整合產業供應鏈Supply Chain 。 最後期望透過標竿示範產業之場域驗證,例如:以汽車零組件製造產業標竿示範場域,透過機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統計畫進行驗證,讓汽車代工廠與汽車原廠之間有更優化的供應鏈聯繫,並成為該行業標準。更進一步尋求更多的AI團隊,加入場域協作平台跨產業之開發,帶動整體AI新創與場域結合的生態系。 海量數位工程研發的自走車