:::

【109年 應用案例】 運用深度學習的AI檢測系統,只要0.5秒就能對不規則多邊形體瑕疵做出檢測!

傳統製造業採人工目視檢測產品,品質良率缺乏穩定性

傳統製造業所生產的產品,「品質良率的優劣」是至關重要的議題,也是客戶業務要求的決定因素。近年來雖已有許多AOI視覺檢測輔助系統,但在自動化導入檢測系統時,仍有多項限制條件無法克服。

例如:少量多樣的產品外觀、無法標準化的不規則多邊形產品尺寸、因光線不同角度暈射之玻璃或金屬產品等,不易以AOI視覺檢測來輔助產品良率的過濾,所以仍有許多傳統製造業採用人工目視檢測產品的品管流水線。

人工檢測耗力耗時,國外解決方案昂貴

國內某模型新創製作公司,因常有客製化少量多樣的產品需要製造,雖有國外進口百萬級模具設備,但在產品外觀品質檢測的部份仍多用人工目視檢測,每位員工的測試標準不一,且為了正確完整的檢視產品的外觀,每個人所花費檢視的時間也不容易控制,往往同一個產品需要反覆檢視才能確保品質標準之要求,相當耗力耗時,也易受外界環境影響。

模型公司雖曾評估擬改採國外的AOI視覺檢測設備,但一組設備的價格不菲,又只能檢測部份型式的產品參數,且無學習功能以達到多樣化檢測的目標,故仍只能被動維持原方案……

客製化解決方案,大幅提升檢測效率與節省人工成本

為了降低人工作業的誤判率及操作成本,進而提升公司產品競爭力,模型公司尋求五百戶科技有限公司協助,期望透過客製服務,以Deep Learning人工智慧技術導入,改善傳統AOI視覺檢測系統的缺點,增加可用視覺檢測系統之產品面向種類,更精準地提升視覺檢測產品的準確性。

五百戶科技在國立中央大學創新AI研究中心的協助下,依據模型公司提供的五種瑕疵條件定義,如:刮痕、毛屑、白斑、損傷破裂與烤漆不均勻等狀態,先蒐集訓練集資料,再手動加工複製瑕疵條件到產品的其他位置與角度,再接著運用程式產生不同角度、光線變化下的瑕疵圖檔,並進行瑕疵標記。

並使用不同演算法所需的訓練集程式方法,如:VGG、RestNet、Inception、DenseNet、Xception、SqueezeNet、對目標的遷徙學習、分類問題Faster_Rcnn、SSD、Yolo、Mask_Rcnn等物件辨識演算法後,經過精確率與速度的綜合考量下,進而選擇了SSD作為主要核心測試檢驗用的演算法。

再產出該演算法所需要之訓練集格式內容,做為比對模型使用;繼而使用不同的AI框架,如:tensorflow、keras等,都做了實際的驗證測試,並產出驗證測試報告,最後調整出每種產品檢驗時的最佳應用參數,確保檢測準確率達平均95%,檢測時間也由5秒減低至平均0.5秒。

模型公司原製作流程僅於人工檢測完成後,批次加蓋QC合格印章,或挑出有瑕疵之產品。導入此檢測系統後,原流程不變,但加速了人工判斷的時間,並且在過程中錄影存檔作紀錄,若有瑕疵品便會出現紅色警示並記錄成照片,該件商品即被排入瑕疵待檢區,人工檢測後若為合格品即可往下檢測下一產品,大幅提升檢測效率與節省人工成本!

低成本、高效能的AI檢測新選擇!

以機器取代人力的視覺檢測技術,在少量多樣訂單生產、急單和勞動人口短缺情況下,扮演越來越重要的角色。相對國外昂貴的檢測方案,國內能提供相對便宜且客製化之方案,無論是購置成本或檢測效能,都吸引更多業者躍躍欲試,將能有效提升製造業者生產品質之良率,進而提升競爭力。

推薦案例

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛

臺灣是一個海洋國家,你去基隆八斗子漁港或潮境公園遊玩時,是否順道去占地48公頃的國立海洋科技博物館探索海洋世界的奧秘呢為了讓更多人親近海洋科技,基隆海科館導入科技服務,將場館化身為一個大型科技遊樂場,讓大小朋友都樂不思蜀,充分發揮「寓教於樂」的功能。 歷經長時間的規劃,北臺灣最大的基隆海洋科技博物館於2014年元月開幕營運,館內以海洋教育科技為主題,號稱擁有全臺最大的IMAX 3D海洋劇場,主題具有獨特性、又擁有新穎的視廳設備,理應成為基隆知名的地標景點。然而,原先的展覽規畫以靜態為主,內容相當專業,與民眾互動不足,曾經前往參觀的遊客也反映展出內容有限且十分無趣,整體消費者體驗評價欠佳。 海科館不滿意的前3項為周邊景點連結弱、展示內容不吸引人、展示內容少 根據海科館的統計數據顯示,海科館遊客結構當地民眾與外來客的比重約為 64,其中外地遊客以北部居多;交通方式以開車與客運方式為主;出遊類型以家族、親子、朋友居多;逗留時間為 1至2 小時。 再深入了解,遊客感到不滿意的前3項分別為周邊景點連結弱、展示內容不吸引人、展示內容少等,館方分析可能的原因包括部分展示內容的呈現方式過於專業,讓民眾看不懂,以及缺發互動體驗的元素,讓參展民眾覺得無趣,停留的時間匆促而短暫。分析遊客的輪廓可以發現,由於基隆科博館主要客源有半數以上來自於當地民眾,外來客必須以開車或大眾運輸方式前來,來一趟並不是那麼容易,因此,場館與展覽的設計必須導入更多的互動性及趣味性,讓本地客願意一來再來,外地客的停留時間也能拉長一點。並透過科技服務將博物館特色凸顯出來。 經由經濟部工業局AI團隊之一中華民國資訊軟體協會引薦,海科館就委託巨鷗科技協助解決場館無法吸引人的問題。 巨鷗科技初步訪談之後發現,許多遊客前往海科館,大多是受到海科館建築外型、周邊牆面所張貼的告示及懸掛的旗幟、或正在舉辦的活動所吸引;而遊客最感興趣的為 3D 海洋劇場,顯示內容以影音、實體景方式呈現較能吸引遊客。 七大AI科技導入 海科館帶動區域觀光人潮 巨鷗科技透過科技服務的導入,將占地48公頃的場域設計成AI語音導覽、尋寶解謎遊戲、AI展物互動活化、AI空間展館互動體驗、AI人流管控、Face AI互動式體驗、AI語音客服系統等7大服務,藉由AIoT物聯網以及雲端科技讓看展變有趣、不僅解決孩童靜態看展無趣的議題,並可提升雙倍學習效率,讓消費者對海科館的印象改觀,大大提升來客意願,也同步拉升區域觀光人潮。 國立海洋科技博物館導入AI語音導覽等七大科技應用服務。 巨鷗科技以改善海科館空間場域優化為目標,透過臺灣北部海濱鳥類特展的展覽背景為雛形,結合包括「人臉」、「肢體」、「人流」三大主軸,從提升功能的面向,來協助改善海科館對AI的應用。 在具體作法上,海科館及巨鷗科技首先針對場域內的特展進行篩選,先避免在已展出的展覽內進行水電工程、管路等相關建置,影響到展覽本身的觀看品質,轉而找出展期未到的場館先行導入,透過展覽本身的特點搭配一系列的科技服務進行導入。 在海科館內臺灣北部海濱鳥類特展施工內容與策展人討論,初步在展館入口處利用Bella X1做迎賓互動說明,接著搭配AI智慧導覽中文英文X1進行講解,搭配趣味性尋寶解謎集章活動-APP X1,讓民眾闖關,後續將鳥類特展內鳥種進行標本活化互動X1、甚至在展覽空間中導入AR之情境X1增添趣味性娛樂,最後在Face AI做人臉之互動測試臉部進行微笑打分數。nbsp 華麗變身後的海科館將成為親子最佳旅遊地點。圖海科館FB粉絲頁 海科館這套AIoT服務未來可延伸運用於各大展覽類博物館,甚至擴及到靜態美術館等地區,依據不同場域特點導入。同時也可透過政府專案及相關計畫推動,幫助農村再生,讓遊客不再只是去農村看看而已,添加趣味互動以擺脫對不同場域的刻板印象,應用服務範圍十分廣泛。

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。