:::

【111年 應用案例】 連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。

工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。

吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。

堅實的數據分析技術能量 連聯合國都買單

2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。

悠由數據應用公司究竟是如何做到連聯合國機構都買單?

悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。

▲悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。

首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器(Sensor)等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。

以香蕉價格來說,預測價格的準確率從原本70%拉高至99.8%。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。

精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務

悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80%以上。

透過有效動態數據演算法,全球超過120種作物可精準預估產期產量。

▲透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。

透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。

台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。

除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。

悠由數據應用善用數據力量,創造智慧農業奇蹟。

▲悠由數據應用善用數據力量,創造智慧農業奇蹟。

因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。

吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。

悠由數據應用創辦人兼總經理吳君孝。

▲悠由數據應用創辦人兼總經理吳君孝

推薦案例

這是一張圖片。 This is a picture.
測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構

【導入案例】防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵
防患於未然 麗臺科技研發心臟衰竭AI辨識技術可及早發現病徵

隨著高齡人口增加,伴隨著各種慢性病的發生機率日增,其中,心臟衰竭不僅是隱形殺手,由於心衰疾病的病程非常長,復發機率高,造成醫護人員的負擔加重。然而,利用通過醫療認證之心電心音裝置,搭配心臟衰竭風險AI預測評估及遠距照護系統可輔助診斷幫助醫師做出正確的診斷,以利於後續病患的醫療或轉介。 心臟衰竭病程長 醫療支出是糖尿病5倍 如果你有呼吸易喘,甚至稍微動一下就喘,或是夜晚睡覺的時候,容易從睡夢中驚醒,需要坐起來才會比較舒服,又或是下肢容易有水腫等狀況,甚至合併有焦慮、不安、疲倦、食慾下降hellip等症狀,當心很有可能是心臟衰竭。 根據統計,全球心臟衰竭人口約有6000萬人,每年新增的心臟衰竭人口約500萬人。中國的心血管疾病患者將近29億人口,占城市居民死亡原因第二位;而全中國約有1200萬心臟衰竭病人,佔心臟病死因的59以上。尤其心衰疾病的病程非常長,且復發及再入院率非常高,使得醫療支出的成本是高血壓的2倍、糖尿病的5倍。 根據美國研究統計,心肌梗塞及心臟衰竭病人的30天內死亡率分別為166及111,並且30天內再住院率分別為199及244。心臟衰竭的症狀因為和其他疾病如慢性肺阻塞,氣喘等疾病相似,有185 的誤診率,對於醫療院所而言,是相當棘手的問題。 麗臺科技為顯示卡大廠,2000年起投入醫療及健康照護領域。由於董事長盧崑山曾分別與2011年及2015年兩度心臟病發,因此,麗臺科技專注於健康大數據,自主研發心臟衰竭AI辨識技術,此一AI應用讀取病患的心電圖以及心音圖做出異常檢測以及心臟衰竭的風險預測模型,可及早發現疾病徵兆。 麗臺科技自主研發心臟衰竭AI辨識技術 可預測病史及風險 麗臺自主研發之心臟衰竭AI辨識技術具以下三種判斷功能: 1 心臟衰竭病史之預測 將心電及心音圖資料分類為「具心臟衰竭住院病史」以及「未具心臟衰竭病史」兩類。 2 心臟衰竭風險預測 將心電及心音圖資料給予發生的心臟衰竭風險預測值。 3 心臟衰竭再發生風險預測 針對已有心臟衰竭的患者判讀其心音圖及心音圖,判斷其心衰再發生之風險預測。 麗臺科技表示,心臟衰竭AI辨識技術應用可輔助醫師更有效率且精確的診斷,以利後續病患的醫療或轉介。舉台北榮總研究心臟衰竭的離院病患為例,根據心電心音同軸檢測裝置所計算出的EMAT電機活化期指數與SDI心縮不全指數作為治療指引的病患,會比依據傳統症狀做為治療指引的病患,有更高的存活率,此研究也已刊登於國際心臟權威期刊JACC,獲得國際市場肯定。 系統廠商可將心臟衰竭AI辨識技術作其他加值應用 麗臺科技表示,合作系統廠商可選擇自建心臟衰竭AI風險預測引擎,將自有系統之心電心音圖上傳到麗臺心臟衰竭AI風險預測引擎後,引擎回傳風險預測值,做為系統整合廠商合作廠商的加值應用輸入。 不僅臨床使用 心臟衰竭AI風險預測引擎可延伸居家或工作場與使用 此外,這套系統也可以延伸至其他應用,包括: 一、醫院門診快篩:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,在門診、急診進行10秒快速檢測,評估病患心臟病史及心臟衰竭風險。 二、出院風險評估:醫師可使用心電心音記錄器及心臟衰竭AI風險預測模型,評估病患住院期間的心臟衰竭風險,檢測數據可作為出院前的風險評估及預後指標。 三、居家連續照護:病患可使用心電心音記錄器、穿戴心電圖記錄器,透過居家傳輸盒閘道器,在家量測心電心音訊號,並上傳至amor健康雲平台進行心臟衰竭AI風險預測分析。病患可透過APP自主健康管理,檢視歷史生理趨勢;疾病個管師可透過健康管理後台Web管理會員健康。 四、居家康復訓練 病患可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 心臟衰竭AI辨識技術系統可以延伸至員工居家照護等應用。 此外,在工廠或辦公室等場域也可以透過這套系統達到員工健康管理的目標,應用的方向包括: 一、工作場域之作業安全單位:在員工執行工作業務前發給員工穿戴心電圖記錄器。 二、業務執行者生理監測:員工於執行業務或訓練時,配戴穿戴心電圖記錄器之疲勞警示,警示生理狀態是否可繼續執行任務。任務執行段落可使用資料傳輸盒或APP 將生理監測資訊上傳至健康管理平台,並評估作業員工心臟衰竭風險,檢測數據可作為企業資源人力單位做為風險評估及公共安全對應指標。 三、工作場域生理監控中心照護:工作場域的生理監控中心可透過健康雲平台,檢視並記錄員工值情時之歷史生理趨勢。 四、工作場域之護理單位:護理單位在接收生理監控中心指示,可依據值情員工的生理趨勢給予健康管理的建議;護理中心可透過健康管理後台Web管理員工健康。 五、員工可配戴健康手環,進行活動、疲勞、循環、睡眠檢測,透過手機APP自主管理健康及觀察心臟衰竭風險,進行運動及康復訓練,幫助身體快速復原。 工作場域應用心臟衰竭雲端照護及大數據中心示意圖