:::

【111年 應用案例】 連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。

工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。

吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。

堅實的數據分析技術能量 連聯合國都買單

2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。

悠由數據應用公司究竟是如何做到連聯合國機構都買單?

悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。

▲悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。

首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器(Sensor)等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。

以香蕉價格來說,預測價格的準確率從原本70%拉高至99.8%。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。

精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務

悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80%以上。

透過有效動態數據演算法,全球超過120種作物可精準預估產期產量。

▲透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。

透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。

台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。

除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。

悠由數據應用善用數據力量,創造智慧農業奇蹟。

▲悠由數據應用善用數據力量,創造智慧農業奇蹟。

因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。

吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。

悠由數據應用創辦人兼總經理吳君孝。

▲悠由數據應用創辦人兼總經理吳君孝

推薦案例

【導入案例】光學產業AOI導入AI大躍進 徹底解決鏡片瑕疵檢測痛點
光學產業AOI導入AI大躍進 徹底解決鏡片瑕疵檢測痛點

智慧型手機、遠距工作等宅經濟發威,資通訊產業暢旺,帶動光學產業蓬勃發展。然光學鏡片的瑕疵檢測多以人眼檢測進行,不僅耗時費力,受限於人眼容易疲勞,誤判率也是光學業者揮之不去的痛點。受惠於AI技術的演進,上暘光學導入繞射光學技術拍攝,以系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,大大提升瑕疵辨識率高達90以上。 台灣光學產值佔全球10 精密光學應用範圍日廣 光學產業為消費性電子之主流產品,於2019年即使台灣受中美貿易爭端之影響,光電產值仍達463億美元,佔全球10。其中,在「精密光學」部分,即佔新台幣870億元(約29億美元)產值。有鑑於智慧型手機鏡頭數目的增加,相較其他領域之衰退狀況,精密光學仍保有4的持續成長。 自2000年夏普推出全球首款搭載後置11萬像素鏡頭的拍照手機開始,終端消費者即對智慧型手機攝像性能的要求不斷提高,且隨著網際網路5G高速網路的浪潮來襲,帶動擴增實境AR或虛擬實境VR等應用市場的活絡,其技術的創新與應用更為光學產業增添許多動能,而應用的領域更已從智慧型手機延伸普及至汽車、家庭娛樂等大眾民生市場。 光學鏡頭對於「精密光學」經濟發展密不可分,隨著半導體技術的不斷成熟、網路速度的不斷提高,光學鏡頭的運用不僅僅在智慧型手機、平板電腦、傳統相機、播映投影、民生車載領域,其在高精密製程之工程視覺檢測、安防應用的需求更是不斷高速成長。 光學鏡頭瑕疵檢測多以人工進行。 「光學鏡片」為整體光機系統之必要零組件,其進料後與出貨前的鏡片光潔檢測不僅左右整體產線效能發展,對終端客戶的品質承諾影響更是不容小覷。 長期以來,光學產業多以人眼檢測進行瑕疵檢查,隨著生產量的持續提升,不僅人力成本持續上漲。隨著檢驗人員的年齡增長,視力逐漸衰退,誤判率更是年年增高。且近年人力招募困難,即使有幸招募,該檢驗技術養成不易,且訓練時間冗長,無法及時因應產線人力需求。 導入繞射光學技術及AI訓練模型 提升瑕疵辨識率達90以上 現行市面充斥著大量自動化光學檢測系統,並具有多項針對鏡片瑕疵的實質案例。但經由上暘光學多年來的市場探勘與評估,該系統仍無法解決現行人工檢測之問題,其主要在於光學鏡片外型為曲面且透明,並不容易拍攝到各種瑕疵狀況,且一旦瑕疵周圍有其他雜光之干擾,判斷難度更高。且不同型號的鏡片都需依瑕疵狀況個別透過旋動打光、拍攝手法的調校方可進入到判別階段,人力耗費比例仍高居不下,並不符合效益成本。 藉此,經過經濟部工業局AI計畫執行團隊的媒合,小馬光學協助上暘光電建立有效瑕疵拍攝系統。由小馬光學提供精密繞射光學的指導,基於「光」波動的特性即可以統一鏡頭拍攝方式獲取鏡片瑕疵狀況。 現行市場拍攝系統多採幾何光學方式,幾何光學以直線光行進,對於鍍膜缺失、細微刮痕、液態髒污等瑕疵並不易拍攝。合作方案導入繞射光學技術拍攝,經過全角度的精密成像可達到比一般幾何光學元件更高的對比、更卓越的降噪程度,以獲取必要之瑕疵影像。 光學鏡頭刮傷瑕疵示意圖。 為提升本案更細緻的瑕疵檢測辨識率,上暘光學基於系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,不僅提升瑕疵辨識率達90以上,更有助於後續自動化產線發展。 此合作案的AI模型訓練由奕瑞科技提供,目前大部分廠商導入產線瑕疵檢查AOI的系統,大多採用OCR光學字元辨識,是指對文字資料的圖像檔案進行分析辨識處理,取得文字及版面資訊的過程技術,需要達到百分之百的精確度,沒有任何容錯的空間,導致誤殺的情況時常發生。 加入AI訓練模型之後,光學鏡頭瑕疵辨識率大大提升。 AIAOI解決人力不足及誤判率過高兩大痛點 此次奕瑞科技與小馬光學合作,將奕瑞的AI系統搭載在小馬光學研發的光學檢測儀器,在光學檢測瑕疵上加入AI演算法,根據客戶提供的資料與需求,訓練AI模型辨識對於瑕疵的判定,可大幅提升判別的準確度,提生良率,並增加產線效率。透過上暘光學、小馬光學與奕瑞科技三方合作,將光學產業AOI導入AI,期望能徹底解決產業鏡片瑕疵檢測之痛點。 上暘光學自2019年設立生產線後,即希望導入智慧化生產模式。有鑑於公司營運持續成長,生產量持續提升,透過該成果的導入與拓展,將大幅減緩人力需求,更可因高準確判別率指標降低生產排程影響,進而提高生產效率。 上暘光學表示,由於開發成果落地,將可引領該技術推播至光學產業上下游業者,諸如上游光學鏡片原料供應商直至下游成品應用端,包含沉浸式遊戲設備、相關曲面玻璃產品、民生車載及安防攝像裝置等。

【導入案例】東森得易購導入OneID AI流量變現服務 成本效益可達2倍
東森得易購導入OneID AI流量變現服務 成本效益可達2倍

要如何將旗下集團的消費數據整合在一起,產生廣告綜效與提升電商導購訂單轉化率,恐怕是每一位橫跨多產業領域老闆朝思暮想的事情了。沒問題,透過AI就可以逐步幫您辦到 東森得易購為東森國際集團相關企業,其關係企業包含東森國際、東森新聞雲、東森保代、東森自然美、東森全球行銷、東森寵物雲、Her森森、分眾傳媒與香港草莓網、熊媽媽買菜網等公司。在集團關係企業跨產業、跨領域的情況下,加上各單位會員系統獨立運作,消費者數據無法於集團內互通,讓東森集團「將客戶放在上帝的位置」的承諾難以進一步落實。 東森集團旗下公司涵蓋產業範圍廣泛,會員數據庫龐大而分散。 東森集團具備龐大的會員流量,且已應用AI新聞推薦演算法等相關技術於各場域,東森集團各單位的會員系統獨立運作,消費者數據亦無法於集團內互通,缺乏全面性消費行為分析依據,導致無法提升個人化服務與行銷策略的精準性。 東森集團分析現今零售市場所面臨的挑戰與趨勢時表示,因應消費者需求轉變,非傳統型新商業模式紛紛興起,形成零售破碎化現象。各式新興商業模式提供滿足屬於自己的利基市場的服務或商品,消費者將會減少依賴傳統零售模式。 而零售破碎化現象最明顯可在新興國家觀察到,其以跳躍式的方式發展出新興零售,如高成長的快閃拍賣電商品會威脅傳統 B2B2C電子商務平台市場,新興商業模式快速瓜分傳統零售商場,甚而顛覆既有市場遊戲規則,預計未來零售市場將會繼續向細分發展。 新零售產業快速導入AI應用 迎戰高度競爭市場 在虛實融合趨勢下,實體零售業者與線上電商業者之界線日益模糊化,實體零售業設立品牌購物官網、開發品牌 APP、投入電商平台,另一方面電商業者也開始設立線下實體體驗店,擴大與客戶的接觸。為提升營運流程自動化程度以及達成顧客體驗個性化之目標,兩者皆透過線下與線上串接探索消費者數據輪廓,以 AI機器學習、深度學習、電腦視覺、語言處理、移動控制與推動決策技術為基礎,積極導入智慧零售AI應用,形成新零售產業 。 此外, Google Chrome於 109年宣稱 2年內 關閉 3rd party cookie功能, 零售企業 將無法用Cookie追蹤個人化、理解使用者在各個時間、地點、廣告上的使用,導致跨裝置、跨平台追蹤的公司將被迫轉型,也代表 將面臨巨大流量廣告銷售困難。 因此,東森集團決定導入「OneID AI流量變現服務驗證計畫 」,成立東森集團專屬的數據聯盟,運用「 Unified ID」進行跨產業、跨服務的資料交換。將關係企業由以往的蒐集個人化數據,轉為分析整個產業間消費者會有的相同行為特徵,再將其進行分群,以取得相同行為特徵的使用者,並提供其有興趣的內容。並利用第一方數據與 AI技術提升廣告點擊率,提升廣告商業價值以及電商導購訂單轉化率。 此一計畫的AI技術由東森與華碩電腦共同開發,系統架構主要開發項目包含專案規劃、系統架構設計、系統環境建置、演算法開發、演算模型驗證以及系統驗證等,其應用技術涵蓋大數據平行運算框架、自然語言處理、用戶推薦嵌入系統、相似度搜尋、搜尋引擎索引、點擊率預測等技術。此計畫為研發一個全面的數據收集、加工、整合平台「數據中台」,吸收各種數據源的數據,以用戶為基本單位,形成結構化的數據表,並進行用戶標籤的計算,以期精準描述各用戶的特性。而後利用此數據進行 AI精準廣告投放。nbsp 東森數據中台架構圖 東森導入OneID AI流量變現服務 預估成本效益可達2倍 東森表示,本計畫主要核心應用到「用戶行為數據」及「AI技術」兩塊,其中用戶行為數據為東森集團提供;AI技術則由公司團隊與華碩團隊共同開發,涵蓋AD Serve系統、精準受眾估計系統、AI自動優化系統、廣告效果分析系統、用戶畫像系統等。而東森與華碩共同開發與華碩共同開發AI技術,其各客戶數據與流量獨立不互通。 根據估算,此開發計畫總成本效益可達200,預期可明確掌握用戶數位軌跡,行為與輪廓之效益,將可帶來客戶終身價值LTV的大幅成長,有效整合東森線上線下,提升會員服務內涵,並大大增加企業價值。 未來,東森集團將持續拓增國際市場,目前鎖定中國大陸作為主要推廣市場,將整個服務模組,以東森全球的營運模式,拓展到全世界華人市場,並於兼顧GDPA compliance 的條件下,再結合草莓網,將東森新零售服務以大數據及AI的優勢,服務面向全世界。 東森集團將透過草莓網將服務與技術擴增至全球市場。

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
哈瑪星科技建構AI模型管理平台 加速AI落地應用

搭上AI列車,資服業者借助深厚的產業基礎,不僅自己轉型,也協助客戶轉型 成立已超過20年的哈瑪星科技,近年來不斷研發AI技術,並協助產業客戶導入AI。哈瑪星認為,執行一個完整的AI專案,除了AI理論知識、數據分析與模型訓練能力,實務上還需要依據客戶的需求開發數據串接API、建置資料庫、開發前端RWD網頁,甚至還需要考慮到版面設計與使用者體驗 User Experience。這些工作不僅對AI新創業者形成技術門檻,即便對已具規模的業者來說,每個專案反覆投入人力進行類似的功能開發,也難以累積技術經驗、加速業務成長。 機關客戶對於AI仍具備高度客製化之需求 以哈瑪星科技所執行的政府A機關的需求為例,用戶須針對特定管道的不實資訊進行管控,需要平台提供用來訓練模型和預測的數據接入功能,並可以在平台上完成自然語言處理NLP文本分類模型訓練與使用。當模型發現不實資訊時,需要即時透過通訊軟體通報相關負責同仁。而B機關的需求則是希望透過AI模型針對民眾陳情案件進行自動分類,並即時提供陳情民眾或案件承辦人員可參考之歷史案件資訊。儘管專案模式相似 數據接入、模型預測、警示通知,但在個別專案中,仍只能分別進行需求功能開發,無法重複利用既有的程式與模型來加速後續專案的執行。 在深入探討之後,哈瑪星科技發現企業面臨導入AI專案的痛點,包括導入成本高昂、專案時程冗長等,其中,在企業內難以齊備資料科學家、分析師、工程師、設計師等人才,而現階段的專案皆為集中解決特定領域需求,難以重複利用AI模型跨入其他應用領域,同時,因為工具集中在AI專案領域,無法滿足客戶提供整體解決方案。 換言之,在AI技術的落地上,由於AI資服業者往往面臨「人力有限」、「領域限縮」與「工具不足」等困境,致使專案執行成本高昂或時程冗長。這些都是業者們亟需解決的共通性問題。因此,若有一個AI模型應用服務管理平台,將可解決上述困難,不僅能夠快速導入降低成本,還有助於縮短專案時程,提供客戶一站式解決方案。 AI模型應用服務管理平台協助快速完成專案 因此,哈瑪星科技在經濟部工業局AI計畫支持下,進行「AI模型應用服務管理平台AISP研發計畫」,投入研發AISP產品,目的是為了讓AI資服業者能事半功倍地完成AI專案。 AI模型應用服務管理平台提供AI一站式解決方案 透過AISP,AI資服業者可透過既有的模組功能快速組裝數據API介接、模型管理與模型預測結果監控訂閱等需求功能。同時也提供常用的圖形化工具,幫助業者快速設計用戶所需要的互動式圖表或儀表板,有效降低執行專案所需要的人力成本,並縮短解決方案POC或導入時程,加速產業AI落地與擴散。 在產品商模上,短期內將廣邀具備AI專門領域技術的資服業者合作,藉由平台服務解決各類場域需求單位所面臨的AI導入問題,逐步建立平台品牌信賴感。 中期則盼以哈瑪星過往的成功經驗逐步拓展業務市場,聯合多家資服業者建立策略聯盟,針對專門領域可解決更多且廣泛的問題,並提供更多解決方案供場域單位選擇。 平台結合領域專家共同擴展海外市場 長期而言,在建立各項專門領域的AI策略聯盟後,平台將擁有大量針對專門領域的AI解決方案專家,累積大量的專案成功經驗後,哈瑪星科技期望AISP將能與專家業者們攜手合作,共同進軍拓展國際市場。 哈瑪星科技股份有限公司於民國89年延攬多位資深專業經理人及相關領域技術專長人才所組成,致力於軟體技術研發暨服務,並以建構成為國際級軟體公司為目標,積極促成各項跨國產業合作機會。公司在首任總經理的優良領導之下,已快速成長成為臺灣主要軟體公司之一。