:::

【109年 應用案例】 文鼎X木刻思 打造AI造字助手 傳統鑄字行文化傳承現曙光

全台僅存的鑄字行 文化傳承曝危機

國內某傳統鑄字行為台灣僅剩一家「仍在營運」的鑄字行,有種使命感,希望把台灣長久以來美麗的鉛字活版技術,長久傳承下去。但即使想要繼續鑄字,現存的模具已經歷超過40年反覆鑄造,用來鑄鉛字的「銅模」紛紛損毀。店中高聳的鉛字牆,正面臨時間侵蝕的困境。

每一枚「銅模」可以用來生產一萬枚鉛字,因此被稱為「鉛字之母」。如果銅模的字跡模糊,鑄出來的鉛字也會模糊,印刷之後就會出現部首殘缺、筆劃參差的現象。

在台灣50~70年代,用來鑄字的「正楷」銅模,負擔傳播文明的重要責任。

▲在台灣50~70年代,用來鑄字的「正楷」銅模,負擔傳播文明的重要責任。

正因銅模崩毀狀況嚴重,鑄字行老闆於2008年發起「字體銅模修復計畫」,與一群熱情參與的志工,首先進行「正楷」銅模字體的修復。三年中各種討論、工坊如火如荼,每週不間斷地討論,似乎銅模復刻之日即在眼前。然而這樂觀的前景,卻發生了意想不到的危機,最終被迫暫停,因為每個人修復的字個性迥異,雖然優美,看起來卻不像是同一套字型……

銅模字體修復師的「共性」養成不易

▲銅模字體修復師的「共性」養成不易

曠日廢時的「字體銅模修復計畫」

經歷2008年的失敗,對鑄字行是巨大打擊,因為不能採用這批字型,而覺有愧於志工們的熱情付出且最重要的銅模仍持續損毀中,尤其是店內最具價值的「正楷」銅模,每多鑄一個字、就又破損一點,讓日星焦急不已!

銅模損壞從「缺角」開始,逐漸碎裂,終至崩壞

▲銅模損壞從「缺角」開始,逐漸碎裂,終至崩壞

為了趕在銅模完全損毀之前至少保存「字體現貌」,鑄字行於2016年重啟修復計畫!在幾位重要志工和Justfont字型團隊的協助下,先將受損最嚴重的「正楷」初號鉛字、部分「宋體」一、二號鉛字先行掃描、保存,待資源到位時,可將「掃描圖檔」轉換「字型檔」,再以電腦進行精修。之後由60歲的老闆一人,緩慢地以一天5個字的速度,修復日星12萬餘枚字型。

有鑑於人力修復的腳步遠遠比不上銅模磨損的速度,鑄字行透過更嚴謹的測試徵選,把3至4位有志長期協助修復的人才聚集起來。除重新進行字型教育訓練之外,也增加「書法」課程培訓。最重要的,為了養成修字的統一標準,這幾位修復師必須接連數月、數年的同步修字,並且每天就修字成果進行檢討,以便減低誤差,趨於一致。期望讓3位修復師一起工作,每天5個字進行長期修復;加上前置訓練,2~5年內將有望為繁體漢字重建完整的「正楷」4500字初號字型……

算算看一位修字師傅,需要幾個日子,才能把所有字修完?

▲算算看一位修字師傅,需要幾個日子,才能把所有字修完?

文鼎科技神助攻,打造AI造字助手

文鼎透過全球領先的漢字造字技術和工具來協助鑄字行,更透過工業局的AI智慧應用服務發展環境推動計畫-促成資服業者AI加值轉型計畫,與AI新創獲獎廠商木刻思合作,研發融入AI技術,提升造字生產力,達到縮短開發時間與降低成本的目的。

文鼎從早期每個字都要字型設計師一筆一畫從頭開始造,進化到可以利用既有的字根組字,預組出完整的字。但此初步預組的字,可能筆畫重疊厲害,空間與粗細不佳,還需要設計師花許多時間調修,才能產出可用的字型產品。而透過AI加值模組後,系統可學習設計師部分已調修過的字型風格,自動調整剩餘字的架構、筆劃粗細等,最後再由設計師花較少的時間來確認品質與小幅修改,即能完成可用的字型產品,大幅降造字的時間成本。

導入文鼎加值AI造字系統流程-2之1(導入AI工程技術)

▲導入文鼎加值AI造字系統流程-2之1(導入AI工程技術)

文鼎科技以全球字型、跨平台字型技術服務為核心,提供全球各大製造商、系統商、政府單位各種字型解決方案,以過去開發新字體為例,完成一套1萬字的字型需耗時一整年,經濟部工業局輔導文鼎科技與AI新創公司木刻思合作,透過AI學習字型風格,只需完成5,000字,即可自動生成其他5,000個未造字型,再進行品質確認與調修,讓設計師花更少時間便能完成整套字體,大幅提升5成工作效率!未來亦將持續優化造字模組,讓AI完成9成以上字型設計,加速新創字型生產速度。

導入文鼎加值AI造字系統流程-2之2(導入文鼎造字平台)

▲導入文鼎加值AI造字系統流程-2之2(導入文鼎造字平台)

文鼎科技字型創新受到各界採用,如第30屆金曲獎運用字型進行舞台視覺設計、蔡英文總統競選團隊也採用平台字型做為總統大選文宣,於2019年透過AI加值轉變營運模式,首年創造1,500萬元營收,預計5年內提升營收至1億8千萬元以上。

智慧字型設計服務平台

以AI輔助造字降低字型設計門檻,未來可以轉化為「智慧字型設計服務平台」,提供設計師自創字型,也可服務企業字型設計,幫助設計師達到原本無法以個人完成的整套字型開發,也能在專業的造字領域,達成設計與開發的分工,並成為字型代工成功的第一步,對於字型的設計和應用將有重大影響。

且透過AI加值的iFontCloud文鼎雲字庫改變了原本的營運模式,從僅限於文鼎科技內部設計師進行字型設計,打破原有客群限制,與外部設計師進行合作,建立並活絡造字產業圈內的生態系。

AI加值造字流程產出的字型產品:文鼎雲端平台字庫管理工具

▲AI加值造字流程產出的字型產品:文鼎雲端平台字庫管理工具

文鼎科技吳福生總經理表示:工業局輔導參與AI加值計畫的實證成效,自2019年起每年持續投入600萬,至2023年累計投入3,000萬於AI技術研發,文鼎規劃下一階段將轉化為「智慧字型設計服務平台」,把iFontCloud文鼎雲字庫開放給所有熱愛文字的民眾,每個人都可以透過平台創造個人風格字型,並可應用在各領域,預計將創造更大商機。

iFontCloud-AI加值造字流程產出的字型產品,在文鼎雲端平台上銷售

▲iFontCloud-AI加值造字流程產出的字型產品,在文鼎雲端平台上銷售

推薦案例

這是一張圖片。 This is a picture.
AI走入公益,食(實)物銀行也有時尚科技

社團法人台灣食物銀行聯合會以下簡稱本會以食物援助、貧困救濟、減少食物浪費、建構無飢網絡為組織宗旨,在台灣各地已有55個食物銀行據點,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 但各據點皆需大量人力與志工以傳統聯繫方式處理食物銀行日常事務,聯絡非營利組織與捐贈機構,為據點收到物資捐贈後,再分配給有需要的家庭戶或個人。在物資管理上缺乏數位化與整合資訊,可能產生物資資源分配不均問題。 倉儲轉運中心與迷你食物銀行 分配弱勢物資 本次場域驗證單位社團法人高雄市慈善團體聯合總會食物銀行據點之一,以下簡稱高慈總 於109年6月24日正式啟用台灣首座「食物銀行-倉儲轉運中心」佔地200坪,提高食物物資再分配、運用之效益、妥善存放及食物物資管理,至今已搶救近二百噸蔬果續食,服務一百多個團體、逾5萬戶弱勢家庭受惠,持續服務19家迷你食物銀行,將於高雄多個行政區陸續落成,分配食物物資給超過10萬人次弱勢家庭。 高慈總「食物銀行-倉儲轉運中心」於高雄大社區 照片來源 社團法人高雄市慈善團體聯合總會 人力與食物物資管理的挑戰 面對大量經濟弱勢家庭的需求,「食物銀行-倉儲轉運中心」的管理顯得格外重要。進貨時需進行分類整理、汰廢、入帳等繁瑣的工作,出貨時則需參照社工員的食物物資需求做配置建議。這些工作都需要依靠人工判斷及經驗累積。而參與的志工多為高齡人士,體力有限,而倉儲工作需耗費大量體力,志工的招募困難重重。倘若有大批食物物資進庫,在調配上會耗費空間與人力整理、盤點,並同時擔憂食物物資是否能有效的被運用及周轉。也顯示出食物銀行服務逐漸擴大規模,但人力與物資管理系統無法隨之配合。 同時食物銀行物資來自各界之捐贈,故類別多樣且效期、規格、數量也均不相同。迷你食物銀行的志工夥伴,多數也為高齡人士,但卻需執行個案服務、食物物資管理配置、物資資源開發等多重職責,有時也需向物資領用者說明並接受即期、大量特殊性的物資,如成人接受嬰兒奶粉。 「食物銀行-倉儲轉運中心」物資盤點需要皆仰賴人力 迷你食物銀行志工具多重職責 照片來源社團法人台灣食物銀行聯合會 報廢物資減少60 物資轉遞速度增加80 為精進物資管理並達到物資有效利用,並解決人力短缺等問題,在本次場域實證案導入「食物銀行倉儲物資募集AI自動預警需求判讀系統」,第一部分為建構分類模型之前置作業,建置以及蒐集場域倉儲資訊,進行AI建模訓練,將過往場域倉儲資訊收集建置成資料庫,使AI可進行預處理、分類等工作。同時視其物資種類之相依狀況作為特徵值,導入演算法中進行運算建模,再依收集之資料進行重新訓練,最終進行場域驗證並針對經常性五大類物資進行數據整理,以建立數據資料所需之訓練及測試資料集,第二部分以演算法之RNN技術建構分類模型;進一步利用強化學習建構食物銀行倉儲管理機制,使分類完善之受贈物資如白米、沖泡飲品、麵條、泡麵、罐頭等可以根據儲位指派原則自動指派儲位。 AI服務系統服務流程與說明 資料來源社團法人台灣食物銀行聯合會 在AI預判下,可優化物資轉遞速度及物資調配,有效精準配對物資捐贈並降低捐贈歷程的損耗,增加物資分配正確性,提高媒合服務率即捐贈成功率,降低錯誤物資造成人力物力浪費,即時監控食物物資的庫存,確保操作者能夠迅速回應需求,有效提供物資援助。 以AI系統的導入,加上數據智慧化建置,協助倉儲轉運中心的運作,可爭取更多時間分配捐贈物資使用。導入加速社福團體數位化服務推展,完善照顧整體社會弱勢群組之需求。 使用系統進行物資分配調度 照片來源 社團法人高雄市慈善團體聯合總會 透過本次的場域驗證後,未來可推廣至食物銀行其他服務據點導入AI系統,也可與更多非營利組織、公益團體、慈善團體等夥伴合作,擴大「食物銀行倉儲物資募集AI自動預警需求判讀系統」應用範圍如醫療用品配送,幫助更多組織更智慧化地管理和分發,減少物資的浪費,以提高社會福祉。

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。

【導入案例】海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度
海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度

臺灣堪稱製造業大國,然而,在產線上,品質瑕疵檢測一直是製造業長期痛點,雖然有AOI設備可輔助,但大多採用固定式機器,受限於角度,診斷不夠精準,誤判率也高。海量數位工程公司導入AOI機器智能手臂檢測系統,可有效降低誤判率,提高瑕疵檢測精準度。 一般來說,產品的良率攸關企業的成本與客戶的退貨率,而製造產業品質瑕疵的檢測流程,往往需要編制大量的品質檢測人力。目前製造業檢測工具雖然有AOI設備來輔助進行,但這些設備多半採用固定式的檢測機器,固定式相機容易受限於角度,導致診斷不夠精準,誤判率太高等缺點,因此,人員在後端需要再次篩選檢驗,也就是複檢,通常人工目測檢視的瑕疵漏檢率平均在5上,甚至可高達20。 製造業品質檢測三大痛點 機器手臂AOI之動態多角度品檢協助解決 根據海量數位工程實際了解製造業在檢測產品品質有三大痛點: 痛點一、人力檢測產品品質出錯率高 目前製造業多以人力來檢測產品外觀,但人工判斷多半有誤差,例如:表面刮傷、色差、焊道外觀hellip等,瑕疵判斷出錯率高,且須待成品階段才能一次性檢驗,時常出貨前全檢後依然遭整批退件,導致重製及人力成本大增。 痛點二、品質檢測之數據無法量化與記錄 傳統人力檢測無法保留檢測數據,嗣後發生品質糾紛時,責任難以釐清。而海外品牌高階代工單往往要求溯源與相對應的缺點紀錄,傳統產業原有之人力檢測難以符合更高階代工單之要求。 痛點三、傳統AOI視覺檢測的限制 現有製造業常用的AOI視覺檢測系統,因為視覺軟體技術的限制,都是以固定相機、固定光源及單一角度的方式來進行,這種方式對於平面或形狀由直線組成之產品例如:長方體或正方體的單一檢測點尚可處理,但對於複雜形狀的產品例如:汽車零件多為不規則狀多點、多幅度的檢測,就較難實現。 海量數位工程研發AOI機器智能手臂檢測系統,有效提高瑕疵檢測精準度。 為解決製造業在品質檢測的痛點,海量數位工程決定從研發多角度、可移動式的檢測儀器開始發想,從結合工廠自動化領域中的兩大代表性技術-機器手臂與機器視覺著手。海量數位工程以機器手臂結合AOI之動態多角度AI視覺即時品質檢測方式,改善固定式檢測受限多角度的問題,視覺檢測技術的提升與結合人工智慧,進一步相機取得的影像資訊可由平面取樣提升至多角度、多維度取樣。 選定汽車產業做為實證場域 可快速回應顧客需求 AOI機器智能手臂檢測系統,所運用的AI技術包括無監督學習(unsupervised)、監督式學習Supervised learning、半監督式學習Semi-supervised Learing,使業者在初期樣本不齊全,或是沒有不良樣本的情況下也能使用無監督深度學習技術學習良品,並應用在汽車三角架自動焊接的視覺檢測上。可解決導入前受限於固定式機器的角度、診斷不夠精準、誤判率高的問題。 汽車零組件單價較高,會要求更嚴格的瑕疵檢測正確率。 在導入AI服務的產業中,選定汽車製造業作為實證場域。海量數位工程表示,汽車製造業主要為相關零組件製造商,而且通常元件單價較高,需更多品質檢測品質及良率,會要求更嚴格的正確率,因此選定汽車業做為導入的場域。 機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統,除了可以改善汽車零組件檢測瑕疵品質失誤率外,因為以多角度的機器手臂AOI服務來提升定點式AOI光學檢測,可以符合多數產業之量測需求;最後是建立第三方系統平台,建置共同工作整合平台監測系統,以便在問題發生時,第一時間接收訊息並著手處理。 本系統可針對出廠產品之重要數據進行記錄儲存,為實現未來數位生產線與虛擬生產之基礎。同時於瑕疵發生時,可即時串接海量MES監控系統,迅速反應至相關製造決策部門,嗣後並利用ERP系統進行專案管理與檢討,有效精進其生產效率,降低生產成本。 有助降低溝通成本 期許成為行業標配 就產業上下游整合而言,可以為上下游之數據連貫提供一基礎之標準,降低供應鏈之溝通成本,經由指標代工廠與品牌商的認證,有機會成為該產業之行業標準配置。 透過此一計畫的產出數據資料庫建置,業者進一步透過大數據分析Data Analysis,優化供應鏈管理的解決方案「供應鏈規畫Supply Chain Planning, SCP」,依據數據,建立預測計畫,並運用科技串連供應鏈上下游的數據,精準控制產品品質。未來對接歐美、日,需要品質精細訂單,業者能更快速回應及整合產業供應鏈Supply Chain 。 最後期望透過標竿示範產業之場域驗證,例如:以汽車零組件製造產業標竿示範場域,透過機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統計畫進行驗證,讓汽車代工廠與汽車原廠之間有更優化的供應鏈聯繫,並成為該行業標準。更進一步尋求更多的AI團隊,加入場域協作平台跨產業之開發,帶動整體AI新創與場域結合的生態系。 海量數位工程研發的自走車