:::

【109年 應用案例】 「AI智慧辨色及成本最佳化控管系統」,自動辨色,突破傳統調色模式,大幅降低成本、提升良率!

調配新色彩,只能仰賴老師傅的經驗!

漆料產業所謂的「電腦配色」,僅為從「現有色」中挑選再進行配色,若遇到「新色」實則無法調出對應的漆料,皆仰賴老師傅的經驗,因此遇到新色時皆要重頭調配,耗費了許多人力與時間,且每個師傅因調色習慣不同,所配出來的結果雖相同,但成本卻差異很大!

傳統塗料工廠面臨轉型的危機三部曲

一、缺乏配色標準規範

一般傳統塗料廠生產新色時,會透過「分光測色儀」量測出樣本色之LAB值後,再由調漆師傅根據過往經驗調配出該色漆料,調配完成後再利用儀器檢測LAB值與C、H波長,而此過程並無完整的系統與資料庫紀錄,亦無一套配色標準規範。

二、生產成本難以控管

塗料廠生產許多不同材質及功能之色料,而漆料成本會隨使用的「色母材質」不同而有所差異,即使母件色號相同,色母使用比例不同,成本也會不同,而調漆師傅在調配漆料時,並無一套配色標準規範,導致難以控管生產成本。

三、調色時程冗長與人員訓練不易

在儀器無法取代人工配色之情況下,調漆師傅的培訓須經過多年調漆配色之經驗累積,並熟稔色彩學,對於色相、飽和度、明亮度皆須有基本瞭解,且在調漆時,若無基本參考配色值,必須花費大量時間反覆調配,造成時間成本損失。

建置「AI智慧辨色及成本最佳化控管系統」

塗料廠透過庫點子文創資訊產業有限公司與朝陽科技大學資工系進行產學合作,結合朝陽科大之AI研究能量,共同開發「AI智慧辨色及成本最佳化控管系統」,建置「漆料色號」及「色母材質成本」資料庫,透過資料探勘方法,分析最佳化配色及最佳化成本配方,調漆師傅可參考系統分析之配方進行配色,調漆完成後再將配方輸入系統,反饋至基本資料庫,利用「類神經網路模型」做系統深度學習,建立調色標準化系統,進行成本管控及資料蒐集,以解決塗料廠目前面臨的困境。

在系統建置前期,由庫點子進行塗料廠系統需求之規劃,並建立系統架構與系統資料庫,而後與朝陽科大共同進行資料探勘、類神經網路應用模型功能建置與導入。

系統建置完成後,由庫點子協助塗料廠進行系統測試及修正,待修正與測試無誤後再導入系統,並進行系統使用教育訓練,確保系統正確使用。

系統畫面示意圖

▲系統畫面示意圖

導入系統前後差異

▲導入系統前後差異

拓展漆業新市場,看見漆業新榮景!

此「AI智慧辨色及成本最佳化控管系統」蒐集調漆師傅之調色配方,建立漆料色母配方資料庫,並紀錄該色號之成本,再藉由深度學習功能,搭配分光測色儀,利用每筆數據,分析出最佳化調色配方,以利塗料廠掌控調漆配色之成本,並藉由系統推薦最佳化調色配方,提高調漆速度,增加產值。

未來可產生之效益包含:因產品良率提高,故可減少客訴、增加顧客滿意度;突破傳統調色模式,優化企業形象;提高調漆效率,並可將剩餘時間投入教育訓練,提升人員專業能力;並可共同拓展漆業新市場與學習新應用技術,推廣至其他塗料業者使用,提升整體產業競爭力,看見漆業新榮景!

推薦案例

【導入案例】東森得易購導入OneID AI流量變現服務 成本效益可達2倍
東森得易購導入OneID AI流量變現服務 成本效益可達2倍

要如何將旗下集團的消費數據整合在一起,產生廣告綜效與提升電商導購訂單轉化率,恐怕是每一位橫跨多產業領域老闆朝思暮想的事情了。沒問題,透過AI就可以逐步幫您辦到 東森得易購為東森國際集團相關企業,其關係企業包含東森國際、東森新聞雲、東森保代、東森自然美、東森全球行銷、東森寵物雲、Her森森、分眾傳媒與香港草莓網、熊媽媽買菜網等公司。在集團關係企業跨產業、跨領域的情況下,加上各單位會員系統獨立運作,消費者數據無法於集團內互通,讓東森集團「將客戶放在上帝的位置」的承諾難以進一步落實。 東森集團旗下公司涵蓋產業範圍廣泛,會員數據庫龐大而分散。 東森集團具備龐大的會員流量,且已應用AI新聞推薦演算法等相關技術於各場域,東森集團各單位的會員系統獨立運作,消費者數據亦無法於集團內互通,缺乏全面性消費行為分析依據,導致無法提升個人化服務與行銷策略的精準性。 東森集團分析現今零售市場所面臨的挑戰與趨勢時表示,因應消費者需求轉變,非傳統型新商業模式紛紛興起,形成零售破碎化現象。各式新興商業模式提供滿足屬於自己的利基市場的服務或商品,消費者將會減少依賴傳統零售模式。 而零售破碎化現象最明顯可在新興國家觀察到,其以跳躍式的方式發展出新興零售,如高成長的快閃拍賣電商品會威脅傳統 B2B2C電子商務平台市場,新興商業模式快速瓜分傳統零售商場,甚而顛覆既有市場遊戲規則,預計未來零售市場將會繼續向細分發展。 新零售產業快速導入AI應用 迎戰高度競爭市場 在虛實融合趨勢下,實體零售業者與線上電商業者之界線日益模糊化,實體零售業設立品牌購物官網、開發品牌 APP、投入電商平台,另一方面電商業者也開始設立線下實體體驗店,擴大與客戶的接觸。為提升營運流程自動化程度以及達成顧客體驗個性化之目標,兩者皆透過線下與線上串接探索消費者數據輪廓,以 AI機器學習、深度學習、電腦視覺、語言處理、移動控制與推動決策技術為基礎,積極導入智慧零售AI應用,形成新零售產業 。 此外, Google Chrome於 109年宣稱 2年內 關閉 3rd party cookie功能, 零售企業 將無法用Cookie追蹤個人化、理解使用者在各個時間、地點、廣告上的使用,導致跨裝置、跨平台追蹤的公司將被迫轉型,也代表 將面臨巨大流量廣告銷售困難。 因此,東森集團決定導入「OneID AI流量變現服務驗證計畫 」,成立東森集團專屬的數據聯盟,運用「 Unified ID」進行跨產業、跨服務的資料交換。將關係企業由以往的蒐集個人化數據,轉為分析整個產業間消費者會有的相同行為特徵,再將其進行分群,以取得相同行為特徵的使用者,並提供其有興趣的內容。並利用第一方數據與 AI技術提升廣告點擊率,提升廣告商業價值以及電商導購訂單轉化率。 此一計畫的AI技術由東森與華碩電腦共同開發,系統架構主要開發項目包含專案規劃、系統架構設計、系統環境建置、演算法開發、演算模型驗證以及系統驗證等,其應用技術涵蓋大數據平行運算框架、自然語言處理、用戶推薦嵌入系統、相似度搜尋、搜尋引擎索引、點擊率預測等技術。此計畫為研發一個全面的數據收集、加工、整合平台「數據中台」,吸收各種數據源的數據,以用戶為基本單位,形成結構化的數據表,並進行用戶標籤的計算,以期精準描述各用戶的特性。而後利用此數據進行 AI精準廣告投放。nbsp 東森數據中台架構圖 東森導入OneID AI流量變現服務 預估成本效益可達2倍 東森表示,本計畫主要核心應用到「用戶行為數據」及「AI技術」兩塊,其中用戶行為數據為東森集團提供;AI技術則由公司團隊與華碩團隊共同開發,涵蓋AD Serve系統、精準受眾估計系統、AI自動優化系統、廣告效果分析系統、用戶畫像系統等。而東森與華碩共同開發與華碩共同開發AI技術,其各客戶數據與流量獨立不互通。 根據估算,此開發計畫總成本效益可達200,預期可明確掌握用戶數位軌跡,行為與輪廓之效益,將可帶來客戶終身價值LTV的大幅成長,有效整合東森線上線下,提升會員服務內涵,並大大增加企業價值。 未來,東森集團將持續拓增國際市場,目前鎖定中國大陸作為主要推廣市場,將整個服務模組,以東森全球的營運模式,拓展到全世界華人市場,並於兼顧GDPA compliance 的條件下,再結合草莓網,將東森新零售服務以大數據及AI的優勢,服務面向全世界。 東森集團將透過草莓網將服務與技術擴增至全球市場。

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。

【導入案例】屈臣氏導入insider AI 技術平台 加強客戶體驗提升轉換率
屈臣氏導入insider AI 技術平台 加強客戶體驗提升轉換率

擁有台灣實體連鎖藥妝龍頭地位的台灣屈臣氏,近年來持續擴大數位轉型的腳步,自2014年成立屈臣氏網路商店,積極發展電商市場外,更透過結合Insider的AI技術,自營的官網加上藉由大量的門市銷售數據、會員消費行為累積,及AI的個人化推薦、在最佳的時機點投放最佳的接觸訊息給使用者,大幅提升消費者在Online成交與在線下購物的OO全通路消費體驗,大大提升轉換率。 OO線上加線下 提升客戶轉換率,帶動業績成長 屈臣氏集團為全球零售巨擘,過去30年在台灣落地深耕,專精於零售、門市營運SOP流程優化、零售供應鏈等,但對於電子商務平台經營只有數年,在電商領域如何提升轉化率、透過個人化的AI演算法提供客戶最佳化購物體驗並無足夠的人才與技術資源。 相比於在零售業經常被討論的「O2O」(online to offline),屈臣氏奉行的方向則是「OO」,也就是線下加線上。目前在屈臣氏網路商店下單的客戶,約有兩成會選擇到門市現場取貨。這時門市人員的服務如果到位,扮演現場購買的「觸媒」,就有機會利用線上商店導進來的客戶,為實體店創造額外業績。 根據統計,屈臣氏擁有將近600萬會員,在實體門市零售領域交易資料量龐大,但對比擁有120萬以上APP活躍用戶及近300萬App 下載量,會員活化的程度仍嫌不足,若能夠透過AI技術進行數據整合,也就是透過AI提供客戶進行最佳化的商品推薦以提升客戶從Offline 行為轉換至Online消費,或是導引線上客戶前往門市消費,將可提升大大客戶轉換率,帶動業績成長。 首頁個人化推薦模組:為您推薦 屈臣氏原始使用的開發套件為全球系統商SAP的電商解決方案Hybris,對於電子商務比較偏向單純展示、銷售,缺乏足夠技術資源處理提升消費體驗升級的相關解決方案。 Insider是一家行銷科技(martech)公司,在全球25個城市設有據點,並在台灣有專業的顧問團隊,提供顧客在地化的數位解決方案,致力於以技術優化數位行銷成效,幫助品牌推動數位成長。Insider是許多國內及全球企業包含屈臣氏、家樂福、IKEA、Lenovo、愛迪達、信義房屋、新加坡航空等大型企業的合作夥伴,在透過AI技術提升客戶轉換率、回購率、及提升廣告投資報酬率績效卓著。 屈臣氏引進insider AI演算機制主要是為了加強客戶體驗,透過AI的個人化、整合式行銷模組提升顧客戶消費的互動體驗。進而提升電子商務轉換率,以及透過AI的功能找尋對的客戶,增加新的客群、提供顧客更好的購物消費者體驗。 各頁依據客戶行為觸發折扣碼複製功能推薦 Insider 有許多原本已經研發好的技術模組,可以提供各種客戶於應用情境內去使用,搭配客戶在特定情況下所需要提升轉換率,可以提供許多不同功能的模組使用,目前屈臣氏電商網站APP使用insider不同模組,另有部分也會根據屈臣氏的特殊屬性,例如民生回購、導App需求、刮刮樂折扣碼,去設計因應屈臣氏客戶特殊情境的轉換套件或個人化推薦模組。 引進Web APP 個人化推薦、轉化模組套件 有效提升轉換率10 屈臣氏目前已經導入模組中的前四項,預計在2021年完成全部五項模組導入後,預期提升線上線下的互相導購,進而全面提升屈臣氏的整體電商及零售業績。 1 Web Recommendation Conversion Suit 2 App Recommendation Conversion Suit 3 InStory for eCommerce 4 Mobile App Template Store 5 Insider Architect 屈臣氏目前已經導入AT模組,預計2021年底完成 屈臣氏2020年與insider合作以來,引進了Web APP 個人化推薦、轉化模組套件,已有效提升成交轉換率達平均10以上,ROAS 平均10以上。 未來屈臣氏也希望能將POS銷售紀錄導入insider CDP,可以達成更優化的OO互動機制,完成全通路的消費體驗。 透過結合Insider的AI技術,自營的官網加上透過大量的門市銷售數據、會員消費行為累積,以及AI的個人化推薦、在最佳的時機點投放最佳的接觸訊息給使用者,將大幅提升消費者在Online成交與在線下購物或是進入屈臣氏門市創造互動的機會。藉由新技術在電商寡占的領域,為屈臣氏在消費者心中保持美妝保健類別中獨特的領導地位。