:::

【109年 應用案例】 Lawsnote法遵系統 透過AI技術將法遵CRA流程自動化,提升企業法遵效率

金融監管的趨勢

隨著全世界越來越重視法規監管的趨勢,各領域面臨的法遵成本越來越高。若要說2020年成長最快速的領域是什麼?相信有許多人會認為是法規!

監管嚴格的趨勢下,又以金融業為最,在台灣包含金管會在內的監管單位對於金融業的監管要求趨向嚴格,罰金也越來越重。為了因應這些監管措施,金融業自數年前逐步導入新的法令遵循內控內稽的制度,例如設立法規風險評估、業務單位設立法遵主管作為第一道防線以及法遵自評制度等等。

法遵人員現行的人工法遵流程

然而,金融相關法令多如牛毛,而業務單位的業務手冊又十分繁雜且數量眾多,因此許多金融業的法遵人員必須投入大量的時間處理繁瑣且重複性高的內外規比對工作,避免法令修正的時候,企業的內部規範沒有提出因應措施,造成企業落入風險或被罰款。

法遵人員花了許多時間處理法令異動

▲法遵人員花了許多時間處理法令異動

Lawsnote法遵系統解決方案

作為台灣技術領先的法律科技方案解決公司,Lawsnote收到許多企業客戶表達法令遵循系統化的需求,即開始投入研究人工智慧應用於法遵系統的解決方案,進而開發出Lawsnote RegTech 法遵系統,用以將法遵人員的部分工作流程自動化,降低法遵人員繁雜而重複的工作

Lawsnote將法令異動以及內規調適自動化

▲Lawsnote將法令異動以及內規調適自動化

A法規資料庫、搜尋和法規異動派送

作為RegTech系統的基礎,法令遵循流程是由「法規」所發動,因此具有特定領域「完整」而「即時」的法規資料庫以及法規更新機制是必須的。

然而法規並不只限於立法院所制定之「法律」,還包含了各行政機關由法律授權制定的「行政規則」和「法規命令」,以及用以解釋法規的「行政函釋」,都被視為法遵系統必須遵循的法規。

這些法規資料目前並沒有統一的資料源,除了全國法規資料庫外,更有許多法規散見在不同的機關、組織或是公會網站上獨立的法規頁面,造成蒐集完整法規的成本非常高昂。

由於法規會修正,行政函釋會新發布或廢止,因此即時維持法規的變動也是大問題,縱使一次性的搜集完整的法規,若沒有持續監測法規和行政函釋的異動,也會造成法令遵循的缺口。

Lawsnote作為專業的法學搜尋引擎,具有完整的法規及函釋資料庫,可因應各產業法遵系統需求,並可派送各領域所需法規異動通知。

B1.內規資料庫及搜尋

企業透過規範進行內部管理,稱為「內規」,一般的內規類型包含公司內部規範、標準作業流程SOP和業務指導手冊等資訊。依照產業別監管的強度,企業內規的數量及密度也會依照產業別有所差異。

在監管密度較高的產業,內規數量有時高達數千甚至數萬部,在如此巨大的內規數量之下,紙本或簡單的檔案系統已經無法滿足企業的內部需求,若不建置內規資料庫及搜尋引擎,在查找及遵循內規的過程中,可能伴隨的是大量時間的消耗以及人事成本的浪費。

Lawsnote具有台灣最強大的法學資料搜尋引擎,掌握專利搜尋技術,以及應用人工智慧優化排序演算法,可將企業內規、SOP及指導手冊等內部資料建置為「內規資料庫」,並將搜尋引擎的技術應用在內規資料庫上,達成快速、完整、易用的內規資料庫和內規搜尋引擎。

B2.<法規–內規>條對條連結機制

當法規修正的同時,企業的內規也必須進行相應的檢查和調整。

企業內規檢查程序可能是由法遵人員依據法規修正啟動,也可能是由業務單位法遵主管(第一道防線)啟動,而後由法遵人員(第二道防線)查核。然而無論由哪一個單位啟動,困難之處都是找到修正法規條文所對應到的內規條文,用以判斷是否必須進行修正。

由於內規數量眾多,用語繁雜,並且牽涉到企業不同業務形態,若每次法規修正都必須重新盤點內規,將帶來巨大的時間耗損,因此法遵人員通常高度依賴經驗,在有限的時間和盡量降低風險的拔河中取捨。

並且由於內規的撰寫方式,常常將法規以不同方式大幅改寫和拆解,造成程式比對非常困難,若單純以既有的程式去比對內外規,會造成許多內規無法有效判斷。

Lawsnote經過研究和測試,設計3種人工智慧演算法以及4種rule-base演算法交叉比對,可以將數千部法規和企業內規之間,建立<條文對條文>之間的相關連結,協助法遵人員在法規修正時,能即時判斷連結內規的修正必要性,並大幅節省盤點時間,降低法遵內控風險。

C.法遵內控內稽自評流程

為確保業務單位法遵主管確實履行法遵流程,部分企業會導入法遵自評及法遵教育等機制,透過法遵自評之評估量表要求業務單位法遵主管自行評估法令遵循的內控內稽流程,及盤點既有風險。

法遵人員或稽核則必須依據自評的結果進行結果彙整,或製作風險矩陣等,以便進行法遵風險監控以及弱點事項的追蹤。

Lawsnote RegTech法遵系統支援擴充workflow方案,可將工作流程延伸至法遵自評流程,將現行制度與法遵系統進行客製化整合,並結合組織架構以及單一登入權限控管等機制,實現一站式法遵系統的整合。

Lawsnote法遵系統三大核心模組

▲Lawsnote法遵系統三大核心模組

納入國外法規,作為企業合規工具的首選

Lawsnote將持續優化法規文本解析與辨識技術,除此之外我們將同時開發其他與企業相關之法律科技應用工具,以包套式的服務,成為企業的合規工具首選。除了國內法規之外,Lawsnote亦會將國外法規納入本系統中,使在台的跨國企業能掌握國內、外法規資訊。

Lawsnote一直專注在法學領域的人工智慧應用、資料探勘、演算法設計、搜尋引擎和工作流程優化,致力於透過科技節省法律人的時間。

推薦案例

【導入案例】救命急如星火 AI病危系統監測掌握黃金搶救期
救命急如星火 AI病危系統監測掌握黃金搶救期

60歲的黃先生因中風住進醫院,在加護病房躺了兩周之後,突然病情急轉直下,經過搶救之後,才幸運撿回一命。事實上,在AI病危預警技術的輔助下,讓醫院能在病患心臟停止前的6-8小時,發現徵象並採取及時、準確的醫療措施,可大大降低病患院內死亡的機率。 病情的惡化是一個隨時間演進的過程,其細微推移變化絕非無脈絡可循。過往的研究報告顯示,發生非預期性院內心跳停止的住院病人中,約有六至七成在其心臟停止前6到8小時前已有徵象,但是卻僅有四分之一被臨床人員所偵知發覺,因此需要一種能更早期、並持續使用風險預警工具或系統監測病情,隨時警示醫護人員注意患者病情的細微變化,在病情進展前採取及時、準確的干預措施,有效減少不良事件或嚴重不良事件的發生風險。 非預期性病情惡化 無法及早偵測 急重症患者常出現不可預測的變化,及時發現或能預測潛在急重症患者為重要的課題。目前臨床常用的評估方式為Modified Early Warning Score MEWS,利用簡單的生理參數評估 包含心跳、呼吸速率、收縮壓、體溫、排尿量及意識狀態篩選出高危險群病人,已經證實可以預測病人的臨床預後。 MEWS為單一時間點且制式化公式的評分機制,然而,博鑫醫電所研發的 AI病危預警-醫院急重症病危提早預警指標系統EWS,係以即時反應預測病人狀態為目的,收集病患的連續性時間之生理資料進行深度學習,找出最佳預測模型,提高整體準確度。 博鑫醫電以大數據分析模型建置早期警訊系統EWS、IoT物聯網及5G通信技術,讓醫護人員透過通訊設備遠距離監控病患的生理狀況,監控急重症快速的病情變化,能掌握心臟停止前的6-8小時黃金搶救期。 博鑫醫電導入AI視覺判讀之後,無人化操作方式可大大降低醫護人力 博鑫醫電開發之AI技術為梯度提升集成學習系統 Gradient Boosting Ensemble Learning System, GBELS 建置早期預警系統,為該公司開發之具有學習型之EWS預測演算法,屬於集成學習 Ensemble Learning的一環,且歸類於監督式學習,提供以下三項功能: 一、早期警訊風險通知,以將具有代表性的數據,以GBELS進行分析,提供早期風險評分,讓醫護人員可即時進行臨床評估及提供適當醫療處置。 二、降低醫護人力:收集連續性生理監護數據,如心跳、呼吸、血壓及血氧濃度等,降低醫護人員書寫病例時間。 三、結合IOT物流網及5G通信技術,快速傳輸監護參數和影像資料等醫療數據,協助醫護人員透過通訊設備,遠距離監控患者的病情變化。 AI病危系統監測 掌握黃金治療期 博鑫醫電表示,急重症患者評估疾病嚴重程度是一項複雜工作,患者經常出現不可預測的變化。臨床醫護人員對病情判斷經常根據自己臨床經驗或直覺,缺乏科學、客觀,導致無法正確識別、及時發現潛在急重症患者,導致或誤診導致病患院內死亡率增加。 導入AI早期病危預警系統可輔助急重症的醫護人員正確的預判患者病情,更能讓患者即時受到需要的照料,藉此可以減少同時間急重症病房的人力安排並降低人力成本。 此外,易於攜帶的設計更有助於日後將系統導入救護車、居家照護等場所,對於急診患者可以更早得到適當的照料。院內的其他科別也可以在這套系統周邊開發新的應用,可有效加速智慧醫療技術的發展及推廣;以時下新冠疫情仍然肆虐全球多國的情況,此一系統也可以協助各地醫院更有效地照顧及監控重症患者的病情。 除了AI病危預警外,博鑫醫電也研發AI影像判讀-醫療生理監視器生命週期合規檢測AVS,也就是以AI影像判讀技術,發展生命支持類醫療器材之自動化品質檢測儀器,解決醫療儀器檢測耗時問題,可降低70的檢測時間,提高3倍的檢測數量、有效降低50的人力成本,同時100合乎法規要求,逐步解決醫療領域人力不足、醫療資源短缺、醫護工作超載等問題。目前已於中國大陸扎根,積極在歐洲為落地做準備,未來將朝日本及美國市場發展。 博鑫醫電研發AI影像判讀-醫療生理監視器生命週期合規檢測AVS,解決醫療儀器檢測耗時問題,可降低70的檢測時間。 現階段博鑫醫電的智慧醫療技術已導入包括新竹馬偕、彰基、東元綜合醫院、高雄工學大學附設醫院、振新醫院、新泰醫院、台北醫學大學附設醫院等醫療院所;國際知名醫材製造商GE HealthcareInc、中國最大醫材製造商邁瑞醫療,皆為博鑫醫電代表性客戶。

【導入案例】屈臣氏導入insider AI 技術平台 加強客戶體驗提升轉換率
屈臣氏導入insider AI 技術平台 加強客戶體驗提升轉換率

擁有台灣實體連鎖藥妝龍頭地位的台灣屈臣氏,近年來持續擴大數位轉型的腳步,自2014年成立屈臣氏網路商店,積極發展電商市場外,更透過結合Insider的AI技術,自營的官網加上藉由大量的門市銷售數據、會員消費行為累積,及AI的個人化推薦、在最佳的時機點投放最佳的接觸訊息給使用者,大幅提升消費者在Online成交與在線下購物的OO全通路消費體驗,大大提升轉換率。 OO線上加線下 提升客戶轉換率,帶動業績成長 屈臣氏集團為全球零售巨擘,過去30年在台灣落地深耕,專精於零售、門市營運SOP流程優化、零售供應鏈等,但對於電子商務平台經營只有數年,在電商領域如何提升轉化率、透過個人化的AI演算法提供客戶最佳化購物體驗並無足夠的人才與技術資源。 相比於在零售業經常被討論的「O2O」(online to offline),屈臣氏奉行的方向則是「OO」,也就是線下加線上。目前在屈臣氏網路商店下單的客戶,約有兩成會選擇到門市現場取貨。這時門市人員的服務如果到位,扮演現場購買的「觸媒」,就有機會利用線上商店導進來的客戶,為實體店創造額外業績。 根據統計,屈臣氏擁有將近600萬會員,在實體門市零售領域交易資料量龐大,但對比擁有120萬以上APP活躍用戶及近300萬App 下載量,會員活化的程度仍嫌不足,若能夠透過AI技術進行數據整合,也就是透過AI提供客戶進行最佳化的商品推薦以提升客戶從Offline 行為轉換至Online消費,或是導引線上客戶前往門市消費,將可提升大大客戶轉換率,帶動業績成長。 首頁個人化推薦模組:為您推薦 屈臣氏原始使用的開發套件為全球系統商SAP的電商解決方案Hybris,對於電子商務比較偏向單純展示、銷售,缺乏足夠技術資源處理提升消費體驗升級的相關解決方案。 Insider是一家行銷科技(martech)公司,在全球25個城市設有據點,並在台灣有專業的顧問團隊,提供顧客在地化的數位解決方案,致力於以技術優化數位行銷成效,幫助品牌推動數位成長。Insider是許多國內及全球企業包含屈臣氏、家樂福、IKEA、Lenovo、愛迪達、信義房屋、新加坡航空等大型企業的合作夥伴,在透過AI技術提升客戶轉換率、回購率、及提升廣告投資報酬率績效卓著。 屈臣氏引進insider AI演算機制主要是為了加強客戶體驗,透過AI的個人化、整合式行銷模組提升顧客戶消費的互動體驗。進而提升電子商務轉換率,以及透過AI的功能找尋對的客戶,增加新的客群、提供顧客更好的購物消費者體驗。 各頁依據客戶行為觸發折扣碼複製功能推薦 Insider 有許多原本已經研發好的技術模組,可以提供各種客戶於應用情境內去使用,搭配客戶在特定情況下所需要提升轉換率,可以提供許多不同功能的模組使用,目前屈臣氏電商網站APP使用insider不同模組,另有部分也會根據屈臣氏的特殊屬性,例如民生回購、導App需求、刮刮樂折扣碼,去設計因應屈臣氏客戶特殊情境的轉換套件或個人化推薦模組。 引進Web APP 個人化推薦、轉化模組套件 有效提升轉換率10 屈臣氏目前已經導入模組中的前四項,預計在2021年完成全部五項模組導入後,預期提升線上線下的互相導購,進而全面提升屈臣氏的整體電商及零售業績。 1 Web Recommendation Conversion Suit 2 App Recommendation Conversion Suit 3 InStory for eCommerce 4 Mobile App Template Store 5 Insider Architect 屈臣氏目前已經導入AT模組,預計2021年底完成 屈臣氏2020年與insider合作以來,引進了Web APP 個人化推薦、轉化模組套件,已有效提升成交轉換率達平均10以上,ROAS 平均10以上。 未來屈臣氏也希望能將POS銷售紀錄導入insider CDP,可以達成更優化的OO互動機制,完成全通路的消費體驗。 透過結合Insider的AI技術,自營的官網加上透過大量的門市銷售數據、會員消費行為累積,以及AI的個人化推薦、在最佳的時機點投放最佳的接觸訊息給使用者,將大幅提升消費者在Online成交與在線下購物或是進入屈臣氏門市創造互動的機會。藉由新技術在電商寡占的領域,為屈臣氏在消費者心中保持美妝保健類別中獨特的領導地位。

【導入案例】化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛
化身大型AIOT科技遊樂場 海科館華麗轉身好吸睛

臺灣是一個海洋國家,你去基隆八斗子漁港或潮境公園遊玩時,是否順道去占地48公頃的國立海洋科技博物館探索海洋世界的奧秘呢為了讓更多人親近海洋科技,基隆海科館導入科技服務,將場館化身為一個大型科技遊樂場,讓大小朋友都樂不思蜀,充分發揮「寓教於樂」的功能。 歷經長時間的規劃,北臺灣最大的基隆海洋科技博物館於2014年元月開幕營運,館內以海洋教育科技為主題,號稱擁有全臺最大的IMAX 3D海洋劇場,主題具有獨特性、又擁有新穎的視廳設備,理應成為基隆知名的地標景點。然而,原先的展覽規畫以靜態為主,內容相當專業,與民眾互動不足,曾經前往參觀的遊客也反映展出內容有限且十分無趣,整體消費者體驗評價欠佳。 海科館不滿意的前3項為周邊景點連結弱、展示內容不吸引人、展示內容少 根據海科館的統計數據顯示,海科館遊客結構當地民眾與外來客的比重約為 64,其中外地遊客以北部居多;交通方式以開車與客運方式為主;出遊類型以家族、親子、朋友居多;逗留時間為 1至2 小時。 再深入了解,遊客感到不滿意的前3項分別為周邊景點連結弱、展示內容不吸引人、展示內容少等,館方分析可能的原因包括部分展示內容的呈現方式過於專業,讓民眾看不懂,以及缺發互動體驗的元素,讓參展民眾覺得無趣,停留的時間匆促而短暫。分析遊客的輪廓可以發現,由於基隆科博館主要客源有半數以上來自於當地民眾,外來客必須以開車或大眾運輸方式前來,來一趟並不是那麼容易,因此,場館與展覽的設計必須導入更多的互動性及趣味性,讓本地客願意一來再來,外地客的停留時間也能拉長一點。並透過科技服務將博物館特色凸顯出來。 經由經濟部工業局AI團隊之一中華民國資訊軟體協會引薦,海科館就委託巨鷗科技協助解決場館無法吸引人的問題。 巨鷗科技初步訪談之後發現,許多遊客前往海科館,大多是受到海科館建築外型、周邊牆面所張貼的告示及懸掛的旗幟、或正在舉辦的活動所吸引;而遊客最感興趣的為 3D 海洋劇場,顯示內容以影音、實體景方式呈現較能吸引遊客。 七大AI科技導入 海科館帶動區域觀光人潮 巨鷗科技透過科技服務的導入,將占地48公頃的場域設計成AI語音導覽、尋寶解謎遊戲、AI展物互動活化、AI空間展館互動體驗、AI人流管控、Face AI互動式體驗、AI語音客服系統等7大服務,藉由AIoT物聯網以及雲端科技讓看展變有趣、不僅解決孩童靜態看展無趣的議題,並可提升雙倍學習效率,讓消費者對海科館的印象改觀,大大提升來客意願,也同步拉升區域觀光人潮。 國立海洋科技博物館導入AI語音導覽等七大科技應用服務。 巨鷗科技以改善海科館空間場域優化為目標,透過臺灣北部海濱鳥類特展的展覽背景為雛形,結合包括「人臉」、「肢體」、「人流」三大主軸,從提升功能的面向,來協助改善海科館對AI的應用。 在具體作法上,海科館及巨鷗科技首先針對場域內的特展進行篩選,先避免在已展出的展覽內進行水電工程、管路等相關建置,影響到展覽本身的觀看品質,轉而找出展期未到的場館先行導入,透過展覽本身的特點搭配一系列的科技服務進行導入。 在海科館內臺灣北部海濱鳥類特展施工內容與策展人討論,初步在展館入口處利用Bella X1做迎賓互動說明,接著搭配AI智慧導覽中文英文X1進行講解,搭配趣味性尋寶解謎集章活動-APP X1,讓民眾闖關,後續將鳥類特展內鳥種進行標本活化互動X1、甚至在展覽空間中導入AR之情境X1增添趣味性娛樂,最後在Face AI做人臉之互動測試臉部進行微笑打分數。nbsp 華麗變身後的海科館將成為親子最佳旅遊地點。圖海科館FB粉絲頁 海科館這套AIoT服務未來可延伸運用於各大展覽類博物館,甚至擴及到靜態美術館等地區,依據不同場域特點導入。同時也可透過政府專案及相關計畫推動,幫助農村再生,讓遊客不再只是去農村看看而已,添加趣味互動以擺脫對不同場域的刻板印象,應用服務範圍十分廣泛。