:::

【109年 應用案例】 Lawsnote法遵系統 透過AI技術將法遵CRA流程自動化,提升企業法遵效率

金融監管的趨勢

隨著全世界越來越重視法規監管的趨勢,各領域面臨的法遵成本越來越高。若要說2020年成長最快速的領域是什麼?相信有許多人會認為是法規!

監管嚴格的趨勢下,又以金融業為最,在台灣包含金管會在內的監管單位對於金融業的監管要求趨向嚴格,罰金也越來越重。為了因應這些監管措施,金融業自數年前逐步導入新的法令遵循內控內稽的制度,例如設立法規風險評估、業務單位設立法遵主管作為第一道防線以及法遵自評制度等等。

法遵人員現行的人工法遵流程

然而,金融相關法令多如牛毛,而業務單位的業務手冊又十分繁雜且數量眾多,因此許多金融業的法遵人員必須投入大量的時間處理繁瑣且重複性高的內外規比對工作,避免法令修正的時候,企業的內部規範沒有提出因應措施,造成企業落入風險或被罰款。

法遵人員花了許多時間處理法令異動

▲法遵人員花了許多時間處理法令異動

Lawsnote法遵系統解決方案

作為台灣技術領先的法律科技方案解決公司,Lawsnote收到許多企業客戶表達法令遵循系統化的需求,即開始投入研究人工智慧應用於法遵系統的解決方案,進而開發出Lawsnote RegTech 法遵系統,用以將法遵人員的部分工作流程自動化,降低法遵人員繁雜而重複的工作

Lawsnote將法令異動以及內規調適自動化

▲Lawsnote將法令異動以及內規調適自動化

A法規資料庫、搜尋和法規異動派送

作為RegTech系統的基礎,法令遵循流程是由「法規」所發動,因此具有特定領域「完整」而「即時」的法規資料庫以及法規更新機制是必須的。

然而法規並不只限於立法院所制定之「法律」,還包含了各行政機關由法律授權制定的「行政規則」和「法規命令」,以及用以解釋法規的「行政函釋」,都被視為法遵系統必須遵循的法規。

這些法規資料目前並沒有統一的資料源,除了全國法規資料庫外,更有許多法規散見在不同的機關、組織或是公會網站上獨立的法規頁面,造成蒐集完整法規的成本非常高昂。

由於法規會修正,行政函釋會新發布或廢止,因此即時維持法規的變動也是大問題,縱使一次性的搜集完整的法規,若沒有持續監測法規和行政函釋的異動,也會造成法令遵循的缺口。

Lawsnote作為專業的法學搜尋引擎,具有完整的法規及函釋資料庫,可因應各產業法遵系統需求,並可派送各領域所需法規異動通知。

B1.內規資料庫及搜尋

企業透過規範進行內部管理,稱為「內規」,一般的內規類型包含公司內部規範、標準作業流程SOP和業務指導手冊等資訊。依照產業別監管的強度,企業內規的數量及密度也會依照產業別有所差異。

在監管密度較高的產業,內規數量有時高達數千甚至數萬部,在如此巨大的內規數量之下,紙本或簡單的檔案系統已經無法滿足企業的內部需求,若不建置內規資料庫及搜尋引擎,在查找及遵循內規的過程中,可能伴隨的是大量時間的消耗以及人事成本的浪費。

Lawsnote具有台灣最強大的法學資料搜尋引擎,掌握專利搜尋技術,以及應用人工智慧優化排序演算法,可將企業內規、SOP及指導手冊等內部資料建置為「內規資料庫」,並將搜尋引擎的技術應用在內規資料庫上,達成快速、完整、易用的內規資料庫和內規搜尋引擎。

B2.<法規–內規>條對條連結機制

當法規修正的同時,企業的內規也必須進行相應的檢查和調整。

企業內規檢查程序可能是由法遵人員依據法規修正啟動,也可能是由業務單位法遵主管(第一道防線)啟動,而後由法遵人員(第二道防線)查核。然而無論由哪一個單位啟動,困難之處都是找到修正法規條文所對應到的內規條文,用以判斷是否必須進行修正。

由於內規數量眾多,用語繁雜,並且牽涉到企業不同業務形態,若每次法規修正都必須重新盤點內規,將帶來巨大的時間耗損,因此法遵人員通常高度依賴經驗,在有限的時間和盡量降低風險的拔河中取捨。

並且由於內規的撰寫方式,常常將法規以不同方式大幅改寫和拆解,造成程式比對非常困難,若單純以既有的程式去比對內外規,會造成許多內規無法有效判斷。

Lawsnote經過研究和測試,設計3種人工智慧演算法以及4種rule-base演算法交叉比對,可以將數千部法規和企業內規之間,建立<條文對條文>之間的相關連結,協助法遵人員在法規修正時,能即時判斷連結內規的修正必要性,並大幅節省盤點時間,降低法遵內控風險。

C.法遵內控內稽自評流程

為確保業務單位法遵主管確實履行法遵流程,部分企業會導入法遵自評及法遵教育等機制,透過法遵自評之評估量表要求業務單位法遵主管自行評估法令遵循的內控內稽流程,及盤點既有風險。

法遵人員或稽核則必須依據自評的結果進行結果彙整,或製作風險矩陣等,以便進行法遵風險監控以及弱點事項的追蹤。

Lawsnote RegTech法遵系統支援擴充workflow方案,可將工作流程延伸至法遵自評流程,將現行制度與法遵系統進行客製化整合,並結合組織架構以及單一登入權限控管等機制,實現一站式法遵系統的整合。

Lawsnote法遵系統三大核心模組

▲Lawsnote法遵系統三大核心模組

納入國外法規,作為企業合規工具的首選

Lawsnote將持續優化法規文本解析與辨識技術,除此之外我們將同時開發其他與企業相關之法律科技應用工具,以包套式的服務,成為企業的合規工具首選。除了國內法規之外,Lawsnote亦會將國外法規納入本系統中,使在台的跨國企業能掌握國內、外法規資訊。

Lawsnote一直專注在法學領域的人工智慧應用、資料探勘、演算法設計、搜尋引擎和工作流程優化,致力於透過科技節省法律人的時間。

推薦案例

這是一張圖片。 This is a picture.
CCTV 智能影像搜索系統

查找某特定人物,尋找攜行李箱入廠人物進入高安區。人物及物件顏色特徵確定,人物藍黑色上衣,行李箱顏色黑色,透過CCTV 智能影像搜索系統,做物件與顏色檢索條件設定,可以成功搜尋到三段縮圖有出現關鍵標的影片,可以有效解決作業人員查找物件標的物,透過此系統查詢速度可比人工快6倍。 需求痛點 日月光高雄廠區內密布CCTV能及時監控廠區中的各個角落,但若在事件事故發生時,無法在有限的時間可透過CCTV影像回放被找到,其背後之意涵與其中蘊藏之巨大風險自是不言而喻,而許多平時無人的區域也很容易成為治安上的死角。故如何更智能、更有效的監控占地龐大的廠區是全體半導體企業打造智慧廠區之一大重點。日月光高雄廠占地遼闊,其中有許多重要的場域需要監控人員進出以確保企業機密與員工安全。 1 自動化生產線與自動倉儲:半導體企業之自動化生產線與自動倉儲中常有AGV(Automated Guided Vehicle)無人車高速行駛,若有廠區人員不慎誤入AGV移動區域且無法對該人員發出警告,則當憾事發生將追悔莫及。 2 材料與產品存放區域:半導體相關製程之材料價值不菲,若存放材料或產品之區域遭人入侵則有損失高價材料、產品之風險。 3 高機密管制區:營業秘密關乎半導體相關企業之核心技術競爭力,若有人員侵入高機密管制區則有企業營業秘密外洩之風險,而營業秘密安全防護一直以來都是半導體相關企業最最重視之議題。 4 卸貨碼頭區:日月光L但碼頭區常有卸貨車輛進出,若人員闖入碼頭區則有發生人車擦撞、碰撞意外之風險。甚至堆放在碼頭區待出貨的貨物有失竊以及因人員碰撞後,貨物倒塌造成損毀,因而造成公司具大的信譽、金錢損失。更進一步的造成生產出貨的不便。 異常事件發生時,如何在海量數據中,快速搜尋符合條件的關鍵影像 日月光高雄廠有許多重要的場域都需要架設CCTV為安全把關,但CCTV的數量動輒上千支、上萬支,一旦發生事件要去搜索影像時,都要用人眼一一回放查找、搜索,耗時耗力效益不彰。有鑑於現今電腦視覺的發展,遂利用AI來替代人眼回放查找。 問題情境 物件偵測 物件偵測資料來源分成兩個部份 開源資料集OIDv4、以及日月光高雄廠CCTV影像檔案。針對OIDv4中,取出符合定義的九大類別物件訓練資料,其中有二類物件未能於OIDv4中搜索到可用資料,分別為刀子與汽油桶,其餘七種類別物件皆可從OIDv4中取出可用訓練資料,此訓練資料皆已有標記。而針對高雄廠CCTV影像檔案,從中抽取部分幀(Frame)的影像,並且對欲偵測的物件進行人工標記以做為訓練與測試資料。 九大物件 顏色辨識 顏色辨識資料來源分成兩個部份網路圖像截圖、以及高雄廠CCTV影像檔案。目前並沒有找到針對顏色辨識應用的公開可下載的開源資料集,因此只能從網路蒐集圖像,於網路上搜索符合定義的九大類別物件的圖像,儲存圖像後將物件與背景分割,只保留物件的區塊,最後將圖像依照顏色做類別標記。另外針對高雄廠CCTV影像檔案,則使用物件偵測資料已標記好的bounding box擷取CCTV影像檔案中各個Frame的物件所在區塊之圖像,最後將肉眼可辨其顏色之圖像依照顏色做類別標記。針對每種物件類別皆有其專屬顏色定義,各種物件類別的顏色定義取決於此物件類別於現實生活中常見之顏色。 動態忽略免除混淆訓練 從OIDv4訓練專案的物件偵測雛型模型時,因為此資料集的每張影像中,皆只有針對單一類別做標記,但影像中有可能包含其他欲偵測之類別未被標記,故針對此種情況,訓練時會使用動態忽略之技術使其不會有混淆訓練的情況。接著使用高雄廠取出的訓練資料用來Fine-Tune雛型模型提高物件於特定指定場域下的辨識率。最終選取訓練過程中於測試集計算之損失值最低的模型做為主要物件偵測模型。 動態忽略 AI幫你看 CCTV 智能影像搜索系統主要是做為監控影像的搜尋輔助系統,可以藉由設定搜尋物件條件來加速達到從影片找出目標事件的功能,僅需定義搜尋條件,即可快速產出關鍵物件的縮圖影片並進行回放確認,縮短昔日以人工調閱案件所須時間,查找時間快6倍,前端安全單位運用此平台可強化風險管理第一道防線之自行監督功能以及早採取因應措施。

這是一張圖片。 This is a picture.
生成式AI在商場!聚典資訊打造創新購物體驗

隨著智慧零售新風潮的崛起與不斷演進的AI科技與技術,聚典資訊乘此風浪推出生成式AI客服機器人Gen AI 客服機器人,為改寫消費體驗的傳統框架做足了準備,欲替場域、顧客與品牌方開創零售新應用 為了提升使用者體驗,聚典資訊攜手三創生活與西門商圈,共同推行全新的生成式AI智能客服系統。這一創新技術結合了高效的便利性、智能問答、自動推薦等功能,顧客們僅需拿起手機,掃描螢幕上的QR Code即可獲得所需資訊與推薦清單,不僅為他們帶來更加方便的購物體驗,場域方更能透過實體機台與後台分析協助,提升營運效益並掌握行銷流量密碼,達到商業洞見新應用的效果。 Gen AInbsp客服機器人 五大特點 【便利性提升】新的AI智能客服系統設置於驗證場域內,配備大螢幕顯示樓層導覽和分類介紹選單,操作簡便直觀。顧客可以掃描螢幕上的QR Code,客服資訊帶著走,隨時隨地查找需要的資訊,大大地提高了尋找商店與商品的效率。 【智能問答系統】聚典資訊開發的智能問答系統,使用自建語言模型,建立專屬語意資料庫。系統運用非關聯式資料庫和Vector Search技術,為每個使用情境量身定制智能問答解決方案。通過語意分析,系統能夠提供精準且人性化的回答,並經由不斷學習和更新資料庫,以提升服務品質。 【自然語言處理 NLP 技術】系統透過大規模語料庫訓練,具備深度語言結構和語意理解能力。不只能夠生成自然流暢的回答,也能通過分析不同用詞和標點符號的情緒語氣,提供適當的回應,使顧客感受到貼心的服務。 【全天候即時服務】該系統提供24小時不間斷的即時服務,確保無論何時何地,顧客都能獲得所需的幫助,其顧客滿意度高達90。 【多元應用場景】聚典資訊的生成式AI智能客服系統,除了智慧零售的應用外,還可以廣泛應用於藝文產業和行銷團隊等多個領域,提升各行業的運營效率和客戶體驗。 聚典資訊於西門商圈六號出口外之智慧顯示機台 生成式AI在商場 智慧顯示更加分搭載點擊與影像辨識的智慧顯示機台,協助使用者更能看見生成式AI,並達到完整的使用流程,避免單方面的資訊傳遞也能有效提高使用者體驗,更能依照場域需求增加模組,如小遊戲、拍貼機與智慧行銷模組,增添使用樂趣與傳遞品牌價值,建立人與人與商場的連結。 10,000以上雙月造訪人次:Gen AI配合搭載點擊與影像辨識的智慧顯示機台,更有效的引導使用者獲得重要資訊。 90以上的使用滿意度:透過完整的使用者旅程,我們也獲得90以上的使用滿意度,並持續為使用者創造美好體驗與回憶。 247全天候客服服務:透過雲端伺服器的運作,我們打造了24小時全年無休的智能客服,無時無刻幫助使用者解決各式難題。 智慧顯示Gen AI 完整零售實體場域的使用者旅程 nbsp 最懂你的智能客服 最多樣的解決方案 聚典資訊提供包含於雲端、地端或混和雲的AI解決方案,依據客戶需求進行導入,並為企業設計了專屬的問答介面,無論是使用者還是管理者,都能輕鬆上手。這套系統不僅美觀大方,還能大幅提升工作效率,讓企業在數位轉型過程中快速進入狀況。 地端部署的生成式AI解決方案能避免資料上傳至雲端,確保企業敏感資訊的安全,從資料輸入到AI模型訓練與推論的所有過程,均在地端主機進行,這樣的架構消除了資訊外洩的風險,特別適合對資料隱私有高度要求的企業,如大型零售業、製造業、科技業及政府部門等。 聚典資訊的專業團隊根據每個企業的特定需求,打造專屬的大語言模型LLM,企業只需提供相關的垂直領域資料,便能透過AI技術快速生成精準的內容,應用範圍廣泛,從文案創作、翻譯語言到客服系統等,幫助企業在不同業務領域中全面提升效能。此外亦能透過後台面板查看每次互動的完整問答紀錄,讓企業能夠檢視使用效益,並根據實際運作情況持續優化AI模型的表現,從而提供更精確、更人性化的服務。 聚典資安落地生成式AI介紹,提供多樣化的解決方案 AI for Good 「AI for good」 一直是聚典在推動技術創新的同時,也關注其在社會責任與ESG永續發展方面的角色,因此能不斷的創新並持續為使用者創造更佳的使用者體驗,也與合作企業一同推動更具效能、具社會意義的解決方案,希望能透過AI打造更智慧的城市並提供更優質的生活體驗。nbsp

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構