:::

【110年 應用案例】 廠房好幫手 Chatbot 讓機器停工期縮短到一天

全球第四大沖床廠金豐機器工業, 自行開發APP與LINE、WeChat或IM急時通訊軟體, 不論機器數量,透過單一平台整合,可透過手機、 平板等行動載具,即時獲知遠端生產、設備狀況及各種狀況排除。

成立近七十年的金豐機器,是早期台灣「客廳即工廠」的幕後功臣,舉 凡湯匙、鈕扣等金屬產品,都是家庭代工用金豐的機器沖壓出來的。隨著工 業 4.0 科技浪潮襲來,使得這家位於彰化八卦山山下的「隱形企業」,不得 不引進 AI 機器人,迅速解決故障排除及縮短等待期的問題。

即時監控 AI機器人成為廠線好幫手

金豐機器工業總經理曾盛明的名言是:「永遠為客戶設想下一步」,年營業額逾新台幣75 億元的金豐,工廠停工一天等於損失2,000 多萬元,走在工業 4.0 的浪頭上,金豐透過各式感測器遠程掌握機台運作狀態並記錄數據,運用網路連接閘道器整合周邊設備,將監測數據傳送至數據庫,快速檢知降低停機風險,雲端線上全年365 天、每天24 小時報修等隨時監控,以實現無人化工廠的目標。

金豐機器工業總經理曾盛明的名言是:「永遠為客戶設想下一步」,年營業額逾新台幣75 億元的金豐,工廠停工一天等於損失2,000 多萬元,走在工業 4.0 的浪頭上,金豐透過各式感測器遠程掌握機台運作狀態並記錄數據,運用網路連接閘道器整合周邊設備,將監測數據傳送至數據庫,快速檢知降低停機風險,雲端線上全年365 天、每天24 小時報修等隨時監控,以實現無人化工廠的目標。

為了讓機器設備故障排除的速度更快,金豐機器工業引進亞太智能機器 公司所研發具備多輪對話能力的客服機器人,結合沖床領域知識圖譜,操作員僅需詢問代理機器人,就可以快速獲得問題解法與報價排修,不必事事等待金豐安排技術人員到廠後才進行處理,最快將停工時間縮短至1天內解決, 降低工廠停工排除障礙時間高達 50%。

加速安檢流程 可大幅減省人力30%

亞太智能機器透過AI 技術機器理解,讓客戶與前線人員僅需要透過詢問,即可立即準確將問題分類,線上回應操作問題及需求,同步安排撿修人員與料件,以迅速解決排除故障問題,有效降低停工損失。在工具機領域上, Open Talk 可結合工業4.0 的工具機進行機台控制與即時機台數據查詢,工程師不需要再拿出手機或平板電腦,只需用語音對話,即可對安裝好的音箱 或機器人等進行機台控制與查詢,在機台出現問題時,能即時通知維修師傅,將送修停工的時間控制在一天內。此外,透過亞太智能提供的技術,自動掌握有問題的是哪個產線、問題類型、處理情況,加速安排檢修流程,將可以 大幅減省人力30%。

推薦案例

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95。 VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及ARVR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。 VCSEL技術應用層面廣,也可應用於無人機。圖為佐翼科技農用無人機 VCSEL技術應用層面廣 AI技術助攻瑕疵檢測 赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。 赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10,造成生產成本增加。 為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。 因此,赫銳特科技首先建立自動光學檢測裝置Automated Optical Inspection,AOI,自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像Test與一標準正常影像Normal,進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network ResNet或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。 導入AOI檢測 提升產能效率達20以上 比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試高溫回焊,失效樣品進再入重工流程。 但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95以上,預期可協助場域業者降低生產成本達10,提高產能效率達20以上。 導入AI影像檢測的前後之差異 赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。 而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

這是一張圖片。 This is a picture.
AI輔助紅十字會 急難救助更智慧

多一點準備 少一點損失 社團法人台灣食物銀行聯合會,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 當台灣發生天然災害時,如地震、山崩、土石流、颱風、水災、旱災等,食物銀行的各項物資,也可即刻投入救災。本次場域驗證單位社團法人南投縣紅十字會食物銀行據點之一,以下簡稱南投紅十字會承擔「備災」物資預前準備、「救災」物資分配等工作,協助政府擔負起災變的救助與賑濟的責任。 在臺灣各項天災均具有發生時間長短和空間覆蓋廣闊或狹隘的特性,加上極端氣候常態化,災害規模與數量逐漸增加,也更難預測。而不同災情所需的物資數量和種類皆有不同,且須應對不同災區人民生活、救援需要、交通狀況、地形限制等各項因素,進行多樣化的物資調配,亦面臨諸多挑戰。 卡努颱風重創南投山區交通 法治國小親愛村奧萬大進行物資遞送" src"httpsaihuborgtwimages35f4ec12f8201e1d7cb12e2f22a64c89jpeg" alt"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" aria-label"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" data-image-id"748" 南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送 災難不斷反覆發生,我們需要時刻做好準備,有效「備災」可減緩災害所造成的衝擊,除了快速應對災區物資需求、賑濟物資,甚至可起到心理支持作用,使災區人民多一層生命財產的保障。 救災資訊缺乏即時性 社團法人台灣食物銀行聯合會為改善偏鄉生活及物資缺乏問題,除了與南投紅十字會合作,並陸續於南投市、埔里、仁愛力行、瑞岩、信義望美、同富、水里、鹿谷及草屯等共9站設立食物銀行據點,每月載運每戶等值新台幣6001000元之物資供應。但在天然災害發生時,仍有許多問題需要克服。 例如當颱風、地震、山崩等天災發生時,救災調度系統的資訊來源依賴於災害發生後的回報,從回報到應變再到執行過程中的時間差,無法及時以災區需求進行「救災」物資調整和分配,資訊缺乏即時性時,就會影響救援效率。 南投紅十字會的「備災」物資如乾糧、水、泡麵等存量、有效期限、發給都是以人力來紀錄,當災害發生時,可能面臨「備災」物資已過期,無法成為「救災」物資。 也有可能前述兩種狀況同時發生 造成花費更多時間把「備災」物資重新調配成可用「救災」物資。另一方面,民眾接到災區缺乏物資的訊息後,熱心捐贈的物資,時常與災區實際需求的物資品項差異甚大,容易造成物資過剩問題。 天災發生前後之物資作業流程 AI預判天災 補強備災物資調度正確性 應用 API 技術介接運算氣候狀態、災況搶救強度,並將南投紅十字會主要工作與搜救之需求地區為優先導入,並搭配南投紅十字會既有豪雨、颱風等模擬救災訓練,建立「天然災害緊急救備物資調度及補充決策系統」以下稱急救備物資系統。 在物資管理上,將物資庫存資料與即時供給的資料輸入急救備物資系統,進行比對分析後,協助南投紅十字會快速辨認物資,如餅乾乾糧、飲品、冷凍食品、衛生紙等,並判斷物資應成為「備災」物資或定期發放的物資。再加上資訊預判,了解偏鄉地區後續可能的災情狀況,進行食物遞送,同時解決前端食物浪費並解決後端實務需求。當天災發生時,可更快速進行應變與決策,完成物資部屬,使物資作業轉換速度增加20。 AI急救備物資系統 幫助物資調配快速應變 透過南投紅十字會的場域驗證將AI系統、物資管理、相關應用推廣至更多不同地區的急救難團體,同時持續改進急救備物資系統中的預警功能,加強預警技術基礎、提高預測精度系統即時性、優化數據收集和分析過程。 同時可與政府機構、氣象部門或其他救援團隊合作,研討整合更多數據源後,建立共享資源和數據的機制,及時共享信息,幫助更多急救難團體提高災難應變的能力,掌握黃金救援時間。

這是一張圖片。 This is a picture.
AI走入公益,食(實)物銀行也有時尚科技

社團法人台灣食物銀行聯合會以下簡稱本會以食物援助、貧困救濟、減少食物浪費、建構無飢網絡為組織宗旨,在台灣各地已有55個食物銀行據點,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 但各據點皆需大量人力與志工以傳統聯繫方式處理食物銀行日常事務,聯絡非營利組織與捐贈機構,為據點收到物資捐贈後,再分配給有需要的家庭戶或個人。在物資管理上缺乏數位化與整合資訊,可能產生物資資源分配不均問題。 倉儲轉運中心與迷你食物銀行 分配弱勢物資 本次場域驗證單位社團法人高雄市慈善團體聯合總會食物銀行據點之一,以下簡稱高慈總 於109年6月24日正式啟用台灣首座「食物銀行-倉儲轉運中心」佔地200坪,提高食物物資再分配、運用之效益、妥善存放及食物物資管理,至今已搶救近二百噸蔬果續食,服務一百多個團體、逾5萬戶弱勢家庭受惠,持續服務19家迷你食物銀行,將於高雄多個行政區陸續落成,分配食物物資給超過10萬人次弱勢家庭。 高慈總「食物銀行-倉儲轉運中心」於高雄大社區 照片來源 社團法人高雄市慈善團體聯合總會 人力與食物物資管理的挑戰 面對大量經濟弱勢家庭的需求,「食物銀行-倉儲轉運中心」的管理顯得格外重要。進貨時需進行分類整理、汰廢、入帳等繁瑣的工作,出貨時則需參照社工員的食物物資需求做配置建議。這些工作都需要依靠人工判斷及經驗累積。而參與的志工多為高齡人士,體力有限,而倉儲工作需耗費大量體力,志工的招募困難重重。倘若有大批食物物資進庫,在調配上會耗費空間與人力整理、盤點,並同時擔憂食物物資是否能有效的被運用及周轉。也顯示出食物銀行服務逐漸擴大規模,但人力與物資管理系統無法隨之配合。 同時食物銀行物資來自各界之捐贈,故類別多樣且效期、規格、數量也均不相同。迷你食物銀行的志工夥伴,多數也為高齡人士,但卻需執行個案服務、食物物資管理配置、物資資源開發等多重職責,有時也需向物資領用者說明並接受即期、大量特殊性的物資,如成人接受嬰兒奶粉。 「食物銀行-倉儲轉運中心」物資盤點需要皆仰賴人力 迷你食物銀行志工具多重職責 照片來源社團法人台灣食物銀行聯合會 報廢物資減少60 物資轉遞速度增加80 為精進物資管理並達到物資有效利用,並解決人力短缺等問題,在本次場域實證案導入「食物銀行倉儲物資募集AI自動預警需求判讀系統」,第一部分為建構分類模型之前置作業,建置以及蒐集場域倉儲資訊,進行AI建模訓練,將過往場域倉儲資訊收集建置成資料庫,使AI可進行預處理、分類等工作。同時視其物資種類之相依狀況作為特徵值,導入演算法中進行運算建模,再依收集之資料進行重新訓練,最終進行場域驗證並針對經常性五大類物資進行數據整理,以建立數據資料所需之訓練及測試資料集,第二部分以演算法之RNN技術建構分類模型;進一步利用強化學習建構食物銀行倉儲管理機制,使分類完善之受贈物資如白米、沖泡飲品、麵條、泡麵、罐頭等可以根據儲位指派原則自動指派儲位。 AI服務系統服務流程與說明 資料來源社團法人台灣食物銀行聯合會 在AI預判下,可優化物資轉遞速度及物資調配,有效精準配對物資捐贈並降低捐贈歷程的損耗,增加物資分配正確性,提高媒合服務率即捐贈成功率,降低錯誤物資造成人力物力浪費,即時監控食物物資的庫存,確保操作者能夠迅速回應需求,有效提供物資援助。 以AI系統的導入,加上數據智慧化建置,協助倉儲轉運中心的運作,可爭取更多時間分配捐贈物資使用。導入加速社福團體數位化服務推展,完善照顧整體社會弱勢群組之需求。 使用系統進行物資分配調度 照片來源 社團法人高雄市慈善團體聯合總會 透過本次的場域驗證後,未來可推廣至食物銀行其他服務據點導入AI系統,也可與更多非營利組織、公益團體、慈善團體等夥伴合作,擴大「食物銀行倉儲物資募集AI自動預警需求判讀系統」應用範圍如醫療用品配送,幫助更多組織更智慧化地管理和分發,減少物資的浪費,以提高社會福祉。