:::

【110年 解決方案】 客製化AI模型 嘉衡科技協助客戶加速導入AI應用

新冠肺炎病毒(COVID-19)疫情之後,加速各行各業運用數位工具進行數位轉型的腳步,然而,對於企業主而言,不免要問:到底值不值得導入AI?導入之後對於企業本身產生多大的效益?事實上,現階段有許多自動化機器學習(AutoML)的平台,均可以協助企業加速導入AI化、建立AI模型,讓企業導入AI變得簡單化。

企業導入AI面臨挑戰大,自動化機器學習平台提供解方

嘉衡科技總經理梁百鋒表示,企業導入AI,面臨了人才難找、資料處理、建模時效、生產結合、技術掌握及成本效率等種種問題,然而,不是每一個環節或流程都需要導入AI技術,企業需要的是滿足業務需求的人工智慧客製化解決方案,因此AutoML是企業應用人工智慧技術的核心工具。 以往要建立100個AI模型,需要100個建模專家,運用AutoML,建100個模型,只需要幾個資料科學家。AI模型建立之後,加入企業生產流程,使得複雜的應用場景,透過高度客製化建模,就能滿足客戶的需求。

在企業導入AI的過程中,以往都高度倚賴人工智慧專家,未來則由產業專家驅動,以解決企業實際業務場景應用為成功關鍵。梁百鋒認為,有四大關鍵階段:

一、 場景選擇:判斷機器學習對於解決問題是否為正確的方式。

二、 數據準備:資料只是材料,如何選擇「對」及「有效」的資料才是關鍵。

三、 模型建立:注意模型的設計效率,多模型組合才能解決問題。

四、 生產整合:模型滿足生產的限制條件,同時基於生產條件的調適彈性。 要解決傳統人工智慧模型設計所面臨到的業務場景多、落地門檻高、落地周期長、成本高等問題,就必須利用AutoML技術打造一個自動化平台,就能有效解決人工智慧發展與落地的問題。

DarwinML 四大核心技術,協助企業從「零」開始設計模型

嘉衡科技所開發的DarwinML 是以基因演化理論為基礎的人工智慧機器學習模型自動化設計(AutoML)平台 ,DarwinML以演化的方式進行機器學習與深度學習模型的自動設計和優化,具備極佳模型生成與模型超參數優化能力,可從「零」開始自動設計模型。

DarwinML 四大核心技術分述如下:

一、模型基因庫:收入大量的演算法和基礎模組,可應用於深度學習(Deep Learning)、機器學習 (Machine Learning)、及數據特徵提取 (Feature Extraction)。

二、自動演化算法:採用了遺傳學演算法(Evolutionary Algorithm)、模型解釋性統計法和強化學習技術,在不斷的模型演化過程中,提高模型的品質。 三、完整的模型生命周期管理:利用 DarwinML 及 Darwin Inference 建立完成封閉系統的模型產生、使用、再優化的過程。

四、多節點並行運算:可基於CPU或GPU運行多節點加速運算,並可部署在企業的私有雲,保障資料安全與模型的機敏性。

DarwinML大幅縮短建模時間,效率顯著提升

▲DarwinML大幅縮短建模時間,效率顯著提升

傳統模型設計流程中,原本從資料特徵提取、模型設計、模型訓練到參數調整,由AI工程師手工建模需要耗費3-6個月時間,但運用DarwinML自動建模,可以縮短至3-7天,時間大幅縮短,效率顯著提升。 DarwinML可以全自動目標導向生成模型與規則集,模組具備自我進化能力,其核心技術包括機器/深度學習/模型基因庫、模型演化設計演算法、大資料並行計算技術等,所產生的效益包括:

一、資料整理、資料標籤、數據清洗半自動化,標籤工作量和資料量依賴降低40%。 

二、機器學習建模縮短至分鐘級,建模能力高於傳統建模5%-10%。 

三、深度學習建模縮短至小時級,建模水準與業界最優模型一致,但模型更簡單、更快速。

(本文源自於「AI Engineering線上小聚」內容精選整理)

推薦案例

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
1 秒鐘完成結帳動作 Viscovery AI 影像辨識助攻智慧零售

近年來,人工智慧 Artificial Intelligence,簡稱 AI 已逐漸改變各行各業的運作模式,不過,絕大部分的工作仍然是由人類完成,AI 則扮演輔助的角色,因而出現了「AI Copilot」一詞,代表「由 AI 驅動的工具或助理」,旨在協助使用者完成各種任務,提高生產力和效率。 AI Copilot 的概念源自於「副駕駛」這個角色,在飛行中,副駕駛協助主駕駛員完成各項任務,確保飛行安全與效率。其實,工業革命的「機器」就開始有 Copilot 的影子,各種機器在不同領域中扮演「Copilot」的角色,輔助人類完成繁重的體力和重複性工作,大幅提升工廠生產效率,推動經濟快速發展。 隨著運算設備的進步、機器學習、深度學習、影像辨識等技術的突破,AI Copilot 的概念逐漸成形。AI Copilot 的發展標誌著從「機器輔助提升到智慧輔助的轉變」。早期的機器人只能完成預設的重複性工作,而現在的 AI Copilot 則能夠學習和適應新的環境與任務,並在實際應用中不斷優化自身表現。這一轉變不僅改變了人機交互的方式,也為各產業帶來了深遠的影響。 AI Copilot 的應用範圍涵蓋了各個行業,包括:金融、醫療、製造、教育、零售hellip等等,無處不在。 AI Copilot 於零售業的應用:AI 影像辨識結帳 在零售業,AI Copilot 的應用已經開始展現具體成果。 以 Viscovery 的 AI 影像辨識結帳系統為例,這套系統即為 AI Copilot 模式的一種,輔助店員加速結帳,或者輔助消費者簡化自助結帳流程。 nbsp 一般的結帳方式需要店員逐一掃描商品條碼,若是無條碼的商品,如:麵包、餐點,則需店員花時間先用肉眼確認品項,再一個個輸入到 POS 結帳系統中。根據一家連鎖麵包店實測,資深店員從「肉眼辨識」到「輸入一盤 6 顆麵包的商品資訊到結帳系統」的過程,就要 22 秒的時間,新進店員需要的時間可能更多。另外,根據一家日本麵包店業者分享,培訓員工認識、熟悉商品需要 1 至 2 個月的時間。 nbsp 現在有了 AI 影像辨識技術,店員可以把「辨識商品」的步驟交給 AI,由 AI 扮演 Copilot 的角色,1 秒內迅速辨識品項,加快結帳,整體節省 50 的結帳時間,優化顧客購物體驗。而培訓員工辨認麵包的時間成本,也能因此有效縮短。 nbsp 即便是帶有條碼的商品,AI 也可以在一秒內快速辨識多個品項,相比逐個掃條碼的方式,效率更高 nbsp 而有 AI 影像辨識「輔助」的自助結帳系統,則能夠讓消費者在沒有店員幫助的情況下,順利完成購物,省去刷條碼或在螢幕上查找品項的麻煩,提升購物體驗,在缺工、找不到店員的時代,也幫助店家降低營運成本。 nbsp AI 快速辨識多件結帳商品只要一秒鐘 圖片來源:Viscovery 近來,致力研發 AI 影像辨識結帳方案的新創在各國嶄露頭角,目前已知最輕量化的解決方案就在台灣,只要在結帳櫃檯安裝一支 Viscovery 的鏡頭與一台搭載 Viscovery AI 影像辨識軟體的平板,即可與店家既有的 POS 結帳系統串接,馬上啟用。 整合方式多元,有隨插即用的作法,也有與店家 POS 整合的 API 串接方案。 Viscovery AI 影像辨識系統可與店家現有的 POS 系統無痛整合 圖片來源:Viscovery AI 影像辨識結帳的導入實例 目前 Viscovery AI 影像辨識系統已導入台灣連鎖烘焙店、新加坡中式麵店、日本仙台百貨公司商辦超商 micormarket、日本麵包店與蛋糕店hellip等等。超過 700 萬筆交易筆數,都是透過這套 AI 系統完成,辨識超過 4000 萬件商品。這些使用案例展示了 Viscovery AI 影像辨識系統在零售行業的廣泛應用,未來將持續深耕、探索零售及餐飲運用 Vision AI 的各種可能。 nbsp Viscovery AI 影像辨識系統已導入日本、新加坡、台灣,使用於麵包店、蛋糕店、餐廳、便利商店等多個場域 圖片來源:Viscovery

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶

【解決方案】聲麥無線推出殺手級5G即時AI語音翻譯 降低5成口譯成本
聲麥無線推出殺手級5G即時AI語音翻譯 降低5成口譯成本

聲麥無線以「語音翻譯即服務 VaaS Voice as a Service」,推出領先全球的 5G 即時 AI 語音翻譯服務「VM-Fi聲麥無線」,提供 AI 即時翻譯字幕 TranSpeech 與 AI 多語智慧櫃台 TransDisplay 服務方案,應用於國際展會、觀光產業、零售商場等多元場域的即時轉譯服務,15分鐘快速設置翻譯服務,可大幅降低客戶50口譯服務成本,創造時間與人力成本效益。這項殺手級的應用,是成立三年的聲麥無線所推出的產品,可使得即時口譯成本大幅下降一半,也成功進軍日本市場,廣受消費者青睞。 TranSpeech演講即時字幕與TransDisplay智慧櫃台AI服務方案 對於經營國際論壇及會展的主辦方而言,支付高昂的口譯費用一直是業者難以言喻的共通痛點。根據統計,若想在台灣舉辦一場全英文論壇,包括兩位口譯師、架設口譯亭、現場收發無線電台、控制台、音訊等,總花費至少要10萬以上才能達到現場口譯需求。 成立於2020年9月的聲麥無線,推出「VM-Fi聲麥無線5G即時AI 語音翻譯服務」,在短短2年時間先後於經濟部工業局通訊大賽、創業歸故里競賽、高通台灣創新競賽(QITC)、日本JR 九州創新商業競賽優秀賞、以及獲得全球 CES 2022智慧城市創新獎中脫穎而出,不僅市場好評不斷,更廣受台灣投資人高度關注及日本大型商社方案採用,期許透過智慧城市解決方案,幫助全球人們免於溝通障礙,享受便利的智慧城市生活。 高速5G即時AI語音翻譯 免去昂貴人力設備 口譯成本省5成 集結語言轉譯、數位內容及UX開發等豐厚技術底子的聲麥無線團隊洞察,市場上僅有兩成的高端消費者有能力支付高昂的口譯費用,為滿足其餘八成的市場需求,聲麥無線結合5G高速傳輸及AI語音辨識技術,協助客戶減輕人力、成本負擔,其商務方案可適用於國際展會、觀光服務、商場及線上線下商務會議等多元場域應用。 5G高速AI語音轉譯服務流程 nbsp「不同於傳統口譯師的逐句口譯,過程不僅耗時又沒效率,聽眾也無法流暢傾聽演講內容」,聲麥無線進一步表示,即時AI語音翻譯服務係運用AI演算法進行講師口說和句子分析,由AI判斷台上講者的斷句及主語意思,隨即進行即席翻譯,講師不必等待逐字翻譯的時間,只要把麥克風外接音源線接入VM-Fi 5G即時AI語音翻譯服務,即可暢所欲言,觀眾也能及時閱讀高速的即席翻譯字幕。 智慧5G即時AI語音翻譯,獲京都智慧城市展 2022-2023 連續兩年採用 現階段「VM-Fi聲麥無線5G即時AI語音翻譯服務」主要支援提供中、英、日、韓、西、法、德七種語言的彼此互轉翻譯服務。在疫情期間,線上活動需求大增的狀況下,聲麥無線導入全球首創的即時字幕服務方案,線上外語講師的內容透過轉譯的即時字幕方式顯示在直播的畫面上,讓聽眾即時了解講師的分享內容。操作方式也很簡單,聽眾不需要下載APP,只要打開活動主辦方提供的Youtube和Facebook直播平台即可收看。即時字幕方案不僅為客戶省去惱人的翻譯工作,也讓線上聽眾能安心享受無縫接軌的即時翻譯服務。 即時字幕提供聽眾無縫接軌的即時翻譯服務 另外,聲麥無線在日本推出的TransDisplay「智慧櫃台方案」也深受消費者喜愛。聲麥無線表示,日本老年人口多,觀光客也多,尤其是疫情期間,大多數消費者戴著口罩,用語言溝通往往出現鴻溝,透過智慧櫃台直接將雙方的溝通由語音轉文字顯示在透明隔板上,讓民眾一目了然,成為最貼心的服務。未來,聲麥無線將結合台灣面板廠商,以軟硬整合方式,在日本商場、車站、機場及政府單位等場域,推出語音轉即時翻譯字幕的服務。 智慧櫃台在疫情期間提供民眾安心友善的溝通服務 VM-Fi扎根日本市場 使用者體驗才是王道 面對疫情之後的全球跨境觀光商機爆發,聲麥無線對於業務拓展信心滿滿。聲麥無線表示,VM-Fi 5G AI即時語音翻譯服務在這波疫情考驗下,已淬鍊出卓越產品服務韌性,可彈性化滿足客戶在各種實體或線上服務的需求。聲麥無線預計2025年4月前在日本設立營運總部,積極與關西、京都縣市政府進行對接與義務擴張,待日本市場根基穩固之後,歐盟市場將是下一個重要目標。 聲麥無線參加經濟部工業局AI計畫的AI創立方聯盟募資活動,公司借助資策會、台日中心TJPO和日本產經省外貿協會JETRO等法人協助,積極搶攻日本市場,「日本市場不僅重視數位轉型,更看重使用者體驗UX」,因此,在日本落地成功之後,拓展全球其他市場將水到渠成。 聲麥無線 VM-Fi 應用在日本商場、車站、機場及政府單位。VM-Fi 是一家成立於2020年,充滿熱情和創新精神的新創公司。我們專注於AI語音識別和即時翻譯技術,致力於讓全球人們能夠在國際演講、服務櫃台和溝通中實現高速的同步語音翻譯,徹底打破語言障礙,讓每一個人都能享有資訊平權的權利。VM-Fi 的 AI 服務不僅僅是一項技術革新,更對全球可持續發展做出承諾: A 數位解決方案:我們致力於減少紙張使用,我們減少的每張A4紙,就減少78克的碳排放,以實際數位方案行動推動環境保護。 B 可再生能源決策:我們選擇使用可再生能源的雲服務,並計劃在2025年之前達成使用100使用可再生能源的雲服務為目標,為未來創造更綠色的科技基礎。 C 節水決策:我們承諾使用在2030年前達成水資源正效益的雲服務,確保水資源的補充量超過消耗量,為地球的未來貢獻力量。 D 淨零碳排放決策:使用新的數據中心時,我們將選擇淨零森林砍伐,以保護自然環境。 E 可持續發展目標:通過上述決策,我們積極促進聯合國可持續發展目標(SDGs)4 、7、9、10、11和13的實現,為創造一個更美好的世界而努力。VM-Fi的願景是打造一個無溝通障礙的世界,讓每個人都能自由交流,共同邁向更美好的未來。讓我們攜手並進,為全球的溝通平權和可持續發展作出貢獻;創建更綠色和更美好的未來