:::

【110年 應用案例】 光學產業AOI導入AI大躍進 徹底解決鏡片瑕疵檢測痛點

智慧型手機、遠距工作等宅經濟發威,資通訊產業暢旺,帶動光學產業蓬勃發展。然光學鏡片的瑕疵檢測多以人眼檢測進行,不僅耗時費力,受限於人眼容易疲勞,誤判率也是光學業者揮之不去的痛點。受惠於AI技術的演進,上暘光學導入繞射光學技術拍攝,以系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,大大提升瑕疵辨識率高達90%以上。

台灣光學產值佔全球10% 精密光學應用範圍日廣

光學產業為消費性電子之主流產品,於2019年即使台灣受中美貿易爭端之影響,光電產值仍達463億美元,佔全球10%。其中,在「精密光學」部分,即佔新台幣870億元(約29億美元)產值。有鑑於智慧型手機鏡頭數目的增加,相較其他領域之衰退狀況,精密光學仍保有4%的持續成長。

自2000年夏普推出全球首款搭載後置11萬像素鏡頭的拍照手機開始,終端消費者即對智慧型手機攝像性能的要求不斷提高,且隨著網際網路5G高速網路的浪潮來襲,帶動擴增實境(AR)或虛擬實境(VR)等應用市場的活絡,其技術的創新與應用更為光學產業增添許多動能,而應用的領域更已從智慧型手機延伸普及至汽車、家庭娛樂等大眾民生市場。

光學鏡頭對於「精密光學」經濟發展密不可分,隨著半導體技術的不斷成熟、網路速度的不斷提高,光學鏡頭的運用不僅僅在智慧型手機、平板電腦、傳統相機、播映投影、民生車載領域,其在高精密製程之工程視覺檢測、安防應用的需求更是不斷高速成長。

光學鏡頭瑕疵檢測多以人工進行。

▲光學鏡頭瑕疵檢測多以人工進行。

「光學鏡片」為整體光機系統之必要零組件,其進料後與出貨前的鏡片光潔檢測不僅左右整體產線效能發展,對終端客戶的品質承諾影響更是不容小覷。 長期以來,光學產業多以人眼檢測進行瑕疵檢查,隨著生產量的持續提升,不僅人力成本持續上漲。隨著檢驗人員的年齡增長,視力逐漸衰退,誤判率更是年年增高。且近年人力招募困難,即使有幸招募,該檢驗技術養成不易,且訓練時間冗長,無法及時因應產線人力需求。

導入繞射光學技術及AI訓練模型 提升瑕疵辨識率達90%以上

現行市面充斥著大量自動化光學檢測系統,並具有多項針對鏡片瑕疵的實質案例。但經由上暘光學多年來的市場探勘與評估,該系統仍無法解決現行人工檢測之問題,其主要在於光學鏡片外型為曲面且透明,並不容易拍攝到各種瑕疵狀況,且一旦瑕疵周圍有其他雜光之干擾,判斷難度更高。且不同型號的鏡片都需依瑕疵狀況個別透過旋動打光、拍攝手法的調校方可進入到判別階段,人力耗費比例仍高居不下,並不符合效益成本。

藉此,經過經濟部工業局AI計畫執行團隊的媒合,小馬光學協助上暘光電建立有效瑕疵拍攝系統。由小馬光學提供精密繞射光學的指導,基於「光」波動的特性即可以統一鏡頭拍攝方式獲取鏡片瑕疵狀況。 現行市場拍攝系統多採幾何光學方式,幾何光學以直線光行進,對於鍍膜缺失、細微刮痕、液態髒污等瑕疵並不易拍攝。合作方案導入繞射光學技術拍攝,經過全角度的精密成像可達到比一般幾何光學元件更高的對比、更卓越的降噪程度,以獲取必要之瑕疵影像。

光學鏡頭刮傷瑕疵示意圖。

▲光學鏡頭刮傷瑕疵示意圖。

為提升本案更細緻的瑕疵檢測辨識率,上暘光學基於系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,不僅提升瑕疵辨識率達90%以上,更有助於後續自動化產線發展。

此合作案的AI模型訓練由奕瑞科技提供,目前大部分廠商導入產線瑕疵檢查AOI的系統,大多採用OCR(光學字元辨識,是指對文字資料的圖像檔案進行分析辨識處理,取得文字及版面資訊的過程)技術,需要達到百分之百的精確度,沒有任何容錯的空間,導致誤殺的情況時常發生。

加入AI訓練模型之後,光學鏡頭瑕疵辨識率大大提升。

▲加入AI訓練模型之後,光學鏡頭瑕疵辨識率大大提升。

AI+AOI解決人力不足及誤判率過高兩大痛點

此次奕瑞科技與小馬光學合作,將奕瑞的AI系統搭載在小馬光學研發的光學檢測儀器,在光學檢測瑕疵上加入AI演算法,根據客戶提供的資料與需求,訓練AI模型辨識對於瑕疵的判定,可大幅提升判別的準確度,提生良率,並增加產線效率。透過上暘光學、小馬光學與奕瑞科技三方合作,將光學產業AOI導入AI,期望能徹底解決產業鏡片瑕疵檢測之痛點。

上暘光學自2019年設立生產線後,即希望導入智慧化生產模式。有鑑於公司營運持續成長,生產量持續提升,透過該成果的導入與拓展,將大幅減緩人力需求,更可因高準確判別率指標降低生產排程影響,進而提高生產效率。

上暘光學表示,由於開發成果落地,將可引領該技術推播至光學產業上下游業者,諸如上游光學鏡片原料供應商直至下游成品應用端,包含沉浸式遊戲設備、相關曲面玻璃產品、民生車載及安防攝像裝置等。

推薦案例

【解決方案】佐翼科技無人機導入高爾夫球場域 可節省一半人力
佐翼科技無人機導入高爾夫球場域 可節省一半人力

對於大多數的高爾夫球場而言,場務的營運及管理是一個令人頭疼的問題。「球場就是在賣草皮,場地一定要顧好」,一位高球場負責人不諱言指出。面臨球場場務人力短缺、老年化及成本高昂的市場痛點,導入AI無人機進行農藥噴灑及防蟲害,將可節省球場一半以上的人力成本,並大幅提升整體營運效率。 初夏晌午,位於桃園的台北高爾夫俱樂部,AI智慧無人機緩緩升空,其主要的任務是進行高爾夫球場AI 智慧無人機施肥噴藥的測試。事實上,執行此項任務的佐翼科技,其無人機普遍使用於稻田、香蕉、茶樹等農作物,來從事施肥施藥及防治病蟲害的工作,對於動輒數十到上百公頃的高爾夫球草坪,要運用AI無人機協助草皮維護作業,現階段將進行資料蒐集、建立施藥AI模型及多光譜影像分析測試等,未來將進一步進行大規模的技術落地驗證,為無人機導入高爾夫球場域建立典範。 透過AI無人機施肥灑藥 可節省一半人力 傳統高爾夫球場維護草坪的作業方式,是以人工揹著藥桶,或是駕駛施藥車逐一分區進行噴灑。「國內高爾夫球場於2001年起開始種植超矮性百慕達草種品系,此一草種喜好涼爽的氣候,台灣高溫潮濕的天氣型態並不適宜」,佐翼科技執行長進一步指出,為避免草皮遭受病蟲害,就必須進行農藥噴灑工作,以18洞球場而言,相當於每周要噴灑一次殺菌劑,T台及球道每兩個月噴藥一次。對於高爾夫球場而言,噴灑農藥耗時費力,重要的是,大規模噴灑將增加人員中毒與農藥量增加的風險。 農用無人機在高爾夫球場應用之效益 根據佐翼科技研究,高爾夫球場的蟲害包括夜盜蟲、斜紋夜盜蛾等,其生活習性是傍晚會出來覓食,因此,噴藥的工作必須傍晚施作。依據傳統作業方式,每次施藥估計需要兩台車三個人力,共耗費45小時的時間。若透過AI無人機施肥灑藥,操作人力僅需1人,20分鐘可以噴灑08公頃土地,約可節省三分之二的人力,也可減少營運成本30左右。 高爾夫球場草坪透過AI無人機施肥灑藥,約可節省一半人力 啟用農用無人機應用於高爾夫球場的草皮維護,除了顯著的效益顯現外,佐翼科技也特別導入AI多光譜影像辨識建立NDVI標準化植被指數分析,「所謂的多光譜是將不同的波長波段光線打在草坪的植株上,蒐集反射回來的影像進行分析」,佐翼科技劉姓執行長接著解釋,因為不同光譜,每一種植物在光的波長吸收程度不一,透過多光譜可以掌握草種生長狀況。同時再結合AI影像辨識,可以精準偵測病蟲害分布情況,據此決定施藥量的多寡。 跨領域協作 建立無人機草坪多源影像資料庫 運用AI多光譜影像辨識技術,佐翼科技將蒐集包括可見光譜、多光譜、熱影像和高光譜影像等,建立無人機草坪多源影像資料庫,完整掌握百慕達草種生長週期。 佐翼科技累積豐富的農業AI無人機噴灑藥劑經驗,但要將AI解決方案導入大面積的高爾夫球場仍有諸多問題需要克服。例如需要建立全新施藥模型及測試飛行方式,尤其是多光譜影像辨識運用,概念驗證並不困難,但實際執行則需要更多的測試實證,反覆推論,並與植物專家建立協同作業才能完成,這部分則須仰賴資策會等法人單位跨域整合,集結更多場域投入實證,建立典範,才能在高爾夫球場場域擴散。 智慧無人機導入高爾夫球場的國際案例文獻並不多,在驗證的過程中,能否快速複製至下一個球場尚未可知,但佐翼科技劉姓執行長認為,透過跨領域協作的方式,將問題定義清楚,一一臚列,供需雙方取得共識,針對每一個問題提出可以解決的方案,並找尋內外部的資源合作,才能逐步完成高爾夫球場智慧化的目標,順利協助產業轉型。 佐翼科技執行長劉峻麟

這是一張圖片。 This is a picture.
AI輔助紅十字會 急難救助更智慧

多一點準備 少一點損失 社團法人台灣食物銀行聯合會,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 當台灣發生天然災害時,如地震、山崩、土石流、颱風、水災、旱災等,食物銀行的各項物資,也可即刻投入救災。本次場域驗證單位社團法人南投縣紅十字會食物銀行據點之一,以下簡稱南投紅十字會承擔「備災」物資預前準備、「救災」物資分配等工作,協助政府擔負起災變的救助與賑濟的責任。 在臺灣各項天災均具有發生時間長短和空間覆蓋廣闊或狹隘的特性,加上極端氣候常態化,災害規模與數量逐漸增加,也更難預測。而不同災情所需的物資數量和種類皆有不同,且須應對不同災區人民生活、救援需要、交通狀況、地形限制等各項因素,進行多樣化的物資調配,亦面臨諸多挑戰。 卡努颱風重創南投山區交通 法治國小親愛村奧萬大進行物資遞送" src"httpsaihuborgtwimages35f4ec12f8201e1d7cb12e2f22a64c89jpeg" alt"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" aria-label"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" data-image-id"748" 南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送 災難不斷反覆發生,我們需要時刻做好準備,有效「備災」可減緩災害所造成的衝擊,除了快速應對災區物資需求、賑濟物資,甚至可起到心理支持作用,使災區人民多一層生命財產的保障。 救災資訊缺乏即時性 社團法人台灣食物銀行聯合會為改善偏鄉生活及物資缺乏問題,除了與南投紅十字會合作,並陸續於南投市、埔里、仁愛力行、瑞岩、信義望美、同富、水里、鹿谷及草屯等共9站設立食物銀行據點,每月載運每戶等值新台幣6001000元之物資供應。但在天然災害發生時,仍有許多問題需要克服。 例如當颱風、地震、山崩等天災發生時,救災調度系統的資訊來源依賴於災害發生後的回報,從回報到應變再到執行過程中的時間差,無法及時以災區需求進行「救災」物資調整和分配,資訊缺乏即時性時,就會影響救援效率。 南投紅十字會的「備災」物資如乾糧、水、泡麵等存量、有效期限、發給都是以人力來紀錄,當災害發生時,可能面臨「備災」物資已過期,無法成為「救災」物資。 也有可能前述兩種狀況同時發生 造成花費更多時間把「備災」物資重新調配成可用「救災」物資。另一方面,民眾接到災區缺乏物資的訊息後,熱心捐贈的物資,時常與災區實際需求的物資品項差異甚大,容易造成物資過剩問題。 天災發生前後之物資作業流程 AI預判天災 補強備災物資調度正確性 應用 API 技術介接運算氣候狀態、災況搶救強度,並將南投紅十字會主要工作與搜救之需求地區為優先導入,並搭配南投紅十字會既有豪雨、颱風等模擬救災訓練,建立「天然災害緊急救備物資調度及補充決策系統」以下稱急救備物資系統。 在物資管理上,將物資庫存資料與即時供給的資料輸入急救備物資系統,進行比對分析後,協助南投紅十字會快速辨認物資,如餅乾乾糧、飲品、冷凍食品、衛生紙等,並判斷物資應成為「備災」物資或定期發放的物資。再加上資訊預判,了解偏鄉地區後續可能的災情狀況,進行食物遞送,同時解決前端食物浪費並解決後端實務需求。當天災發生時,可更快速進行應變與決策,完成物資部屬,使物資作業轉換速度增加20。 AI急救備物資系統 幫助物資調配快速應變 透過南投紅十字會的場域驗證將AI系統、物資管理、相關應用推廣至更多不同地區的急救難團體,同時持續改進急救備物資系統中的預警功能,加強預警技術基礎、提高預測精度系統即時性、優化數據收集和分析過程。 同時可與政府機構、氣象部門或其他救援團隊合作,研討整合更多數據源後,建立共享資源和數據的機制,及時共享信息,幫助更多急救難團體提高災難應變的能力,掌握黃金救援時間。

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。