:::

【109年 應用案例】 防範於未然 跌倒及危險區域偵測維護長者安全

我們都知道,老人家最怕跌倒,一旦跌倒了,可能出現受傷甚至危害生命等不可收拾的後果,或者是,跌倒之後昏迷,沒有被人發現,也可能產生無可挽回的遺憾。為防範於未然,透過AI技術跌倒或危險區域的偵測,提前預警,將可大大保障長者的生命安全。

根據國外的統計資料顯示,在65歲以上的人群中,每年跌倒發生率為30%-40%。也就是說,每年,10個老年人中就有3個或4個會發生跌倒。事實上,跌倒,也是老年人受傷最普遍的原因。此外,被開水燙到、浴室滑倒等在危險區域的行為偵測警示,都可以大大降低銀髮長者的受傷機率。

為了讓高齡者活得長壽又健康,減少意外傷害的發生,資策會AI團隊積極媒合長期照護中心與AI裝置業者,希望找出銀髮長者最迫切的服務,而長照中心宥於人力與資源,無法面面俱到照顧的地方。

事故傷害名列10大死因之一 預警系統建置為當務之急

據統計,在65歲以上族群的10大死因中,不管是在台灣或是在美國,其中之一都是事故傷害如跌倒等。老人跌倒後往往活動力和生活品質下降,除了可能身體受傷如骨折流血外,也可能產生心理陰影,使得老人家不願外出活動、導致身體變虛。因此,如何防範跌倒,以及即時預警,將跌倒的傷害降到最低,是長照的重要議題。

現階段資策會團隊輔導媒合銀髮照護業者與AI裝置業者,主要除了研發AI長者人臉影像識別技術外,影像跌倒偵測技術及危險區域行為偵測技術等,都成為研發重點,同時已導入北中南三個銀髮照護場域進行實證。

媒合智慧監控廠商與場域合作 有效提升辨識率

提供AI技術的奇卓科技副總經理吳佳琛表示,奇卓科技智慧監控技術在跌倒偵測、人臉辨識及電子圍籬等方面投入研究,技術成熟,但需要有實證場域,逐步累積大數據,才能讓「英雄有用武之地」,透過資策會引介,在長照機構場域中實證,將大大提高辨識率,對於後續應用有相當大的助益。

奇卓科技開發之跌倒偵測解決方案

▲奇卓科技開發之跌倒偵測解決方案

此外,從事安全監控30多年的杭特電子郭宏達協理也指出,智慧監控成功的最大關鍵在於數據的累積及智慧影像分析,建立人工智慧資料庫來進行各項應用。例如徘徊偵測,根據觀察被攝者的肢體動作,來初步判定是否為身體不適或異常狀況,可即時通報監控中心。或是當長者靠近飲水機或熱水器等危險區域,也能快速通報服務人員前往協助,避免發生意外事故,均能有效達到預警效果。

杭特電子開發之跌倒偵測解決方案

▲杭特電子開發之跌倒偵測解決方案

透過在台灣擁有800家會員的台灣長期照顧協會全國聯合會協助推廣,現已有約100餘家長照中小型機構表示有意願導入相關技術,一旦這些場域建置完成,未來將成為推動台灣長照AI化的種子。

推薦案例

【導入案例】東森得易購導入OneID AI流量變現服務 成本效益可達2倍
東森得易購導入OneID AI流量變現服務 成本效益可達2倍

要如何將旗下集團的消費數據整合在一起,產生廣告綜效與提升電商導購訂單轉化率,恐怕是每一位橫跨多產業領域老闆朝思暮想的事情了。沒問題,透過AI就可以逐步幫您辦到 東森得易購為東森國際集團相關企業,其關係企業包含東森國際、東森新聞雲、東森保代、東森自然美、東森全球行銷、東森寵物雲、Her森森、分眾傳媒與香港草莓網、熊媽媽買菜網等公司。在集團關係企業跨產業、跨領域的情況下,加上各單位會員系統獨立運作,消費者數據無法於集團內互通,讓東森集團「將客戶放在上帝的位置」的承諾難以進一步落實。 東森集團旗下公司涵蓋產業範圍廣泛,會員數據庫龐大而分散。 東森集團具備龐大的會員流量,且已應用AI新聞推薦演算法等相關技術於各場域,東森集團各單位的會員系統獨立運作,消費者數據亦無法於集團內互通,缺乏全面性消費行為分析依據,導致無法提升個人化服務與行銷策略的精準性。 東森集團分析現今零售市場所面臨的挑戰與趨勢時表示,因應消費者需求轉變,非傳統型新商業模式紛紛興起,形成零售破碎化現象。各式新興商業模式提供滿足屬於自己的利基市場的服務或商品,消費者將會減少依賴傳統零售模式。 而零售破碎化現象最明顯可在新興國家觀察到,其以跳躍式的方式發展出新興零售,如高成長的快閃拍賣電商品會威脅傳統 B2B2C電子商務平台市場,新興商業模式快速瓜分傳統零售商場,甚而顛覆既有市場遊戲規則,預計未來零售市場將會繼續向細分發展。 新零售產業快速導入AI應用 迎戰高度競爭市場 在虛實融合趨勢下,實體零售業者與線上電商業者之界線日益模糊化,實體零售業設立品牌購物官網、開發品牌 APP、投入電商平台,另一方面電商業者也開始設立線下實體體驗店,擴大與客戶的接觸。為提升營運流程自動化程度以及達成顧客體驗個性化之目標,兩者皆透過線下與線上串接探索消費者數據輪廓,以 AI機器學習、深度學習、電腦視覺、語言處理、移動控制與推動決策技術為基礎,積極導入智慧零售AI應用,形成新零售產業 。 此外, Google Chrome於 109年宣稱 2年內 關閉 3rd party cookie功能, 零售企業 將無法用Cookie追蹤個人化、理解使用者在各個時間、地點、廣告上的使用,導致跨裝置、跨平台追蹤的公司將被迫轉型,也代表 將面臨巨大流量廣告銷售困難。 因此,東森集團決定導入「OneID AI流量變現服務驗證計畫 」,成立東森集團專屬的數據聯盟,運用「 Unified ID」進行跨產業、跨服務的資料交換。將關係企業由以往的蒐集個人化數據,轉為分析整個產業間消費者會有的相同行為特徵,再將其進行分群,以取得相同行為特徵的使用者,並提供其有興趣的內容。並利用第一方數據與 AI技術提升廣告點擊率,提升廣告商業價值以及電商導購訂單轉化率。 此一計畫的AI技術由東森與華碩電腦共同開發,系統架構主要開發項目包含專案規劃、系統架構設計、系統環境建置、演算法開發、演算模型驗證以及系統驗證等,其應用技術涵蓋大數據平行運算框架、自然語言處理、用戶推薦嵌入系統、相似度搜尋、搜尋引擎索引、點擊率預測等技術。此計畫為研發一個全面的數據收集、加工、整合平台「數據中台」,吸收各種數據源的數據,以用戶為基本單位,形成結構化的數據表,並進行用戶標籤的計算,以期精準描述各用戶的特性。而後利用此數據進行 AI精準廣告投放。nbsp 東森數據中台架構圖 東森導入OneID AI流量變現服務 預估成本效益可達2倍 東森表示,本計畫主要核心應用到「用戶行為數據」及「AI技術」兩塊,其中用戶行為數據為東森集團提供;AI技術則由公司團隊與華碩團隊共同開發,涵蓋AD Serve系統、精準受眾估計系統、AI自動優化系統、廣告效果分析系統、用戶畫像系統等。而東森與華碩共同開發與華碩共同開發AI技術,其各客戶數據與流量獨立不互通。 根據估算,此開發計畫總成本效益可達200,預期可明確掌握用戶數位軌跡,行為與輪廓之效益,將可帶來客戶終身價值LTV的大幅成長,有效整合東森線上線下,提升會員服務內涵,並大大增加企業價值。 未來,東森集團將持續拓增國際市場,目前鎖定中國大陸作為主要推廣市場,將整個服務模組,以東森全球的營運模式,拓展到全世界華人市場,並於兼顧GDPA compliance 的條件下,再結合草莓網,將東森新零售服務以大數據及AI的優勢,服務面向全世界。 東森集團將透過草莓網將服務與技術擴增至全球市場。

這是一張圖片。 This is a picture.
實現無人商店夢想 喜鵲生活建構智能機產業未來

「喜鵲生活的DNA不會只有販賣機,我們相信販賣機結合科技、通路、人文,才能帶來令我們歡欣鼓舞的成果。」這是喜鵲生活官網上的一句話,讓販賣機帶來愉悅的生活,建構貼心、科技、永續的智能機產業未來,也是喜鵲生活創立的初衷。 成立於2018年的喜鵲生活,在成立4個月之後,即推出臺灣第一台自有品牌結合行動支付掃碼感應、藉由螢幕觸碰完成消費體驗、POS系統管理、數據聚集於後台的喜鵲U1智販機,讓消費者能同步世界的新零售腳步,體驗購買便利性、結帳安全性、視覺娛樂性、提升物流補貨效率的全新零售消費體驗。 傳統販賣機缺乏資訊可見度 AI技術協助資訊透明化 此次,喜鵲智能販賣機更搭載AI技術,提供可調整貨架空間、搭配工業電腦與大尺寸觸控顯示螢幕之自動販賣機,達成無店面商店之目的。 喜鵲生活表示,傳統販賣機最大問題即是缺乏資訊可見度。想要檢查庫存,就必須由補貨人員實際檢查每一部機器,這種做法既費時,成本也高。而當機器故障時,一般更是會長時間無法運作。大多數故障均無人通報,直到下次補貨人員抵達補貨才會發現。接著還必須等待維修技師排行程,而一等就可能需要數週的時間。 傳統販賣機缺乏即時互動性,當消費者投幣後遇到狀況時廠商無法當下處理。此外,傳統販賣機更缺乏彈性,無法應消費者偏好變化而調適。 傳統販賣機存在僅限零錢購物、支付工具單一;商品擺放數量有限,選擇性少等缺點。 受到COVID-19疫情影響,消費習慣轉為非接觸式的方式,致使無人化商店市場升溫。一般自動販賣機僅能擺放較單純的商品如飲料、食品等等。可販售的產業有限。而喜鵲開發出的專利販賣機可調整貨架空間,搭配升降貨梯,適用在各種類型的商品。此外,機台搭配工業電腦與大尺寸觸控顯示螢幕,能同時達到廣告託播的需求,預計朝無店面商店的方向邁進。 根據喜鵲生活觀察發現,近兩年來的消費者市場趨勢,消費者訴求便利生活、飲食消費型態重視餐飲體驗簡單快速,並且搭配手機連網訂購模式,而且熱飲及鮮食外送是兩大趨勢重點。而設置地點、販售品項、食用方式及多元付款方式是智能販售機的市場成長重點。 就便利性而言,臺灣消費者購買自動販賣機食品仍以車站、機場、學校、商業區公司附近為最高,多樣的付款方式也更獲得消費者支持,顯示未來自動販賣機可朝品項多元和支付方式多元兩大方向展開。 AI銷售預測技術整合後台管理 達到精準行銷目的 由於商品種類繁多,難以得知商品在不同因素如季節、市場情形、促銷活動等影響下的需求,容易造成缺貨或庫存過剩的狀況,喜鵲生活特別開發「AI銷售預測技術」,整合至後台管理系統,期能透過數據分析鎖定客戶購買偏好及意願,進而達到精準行銷之目的,進而做出精準的商業決策,有效分配有限資源。 導入AI系統可達精準行銷、庫存管理及供應鏈管理三大目標。 此一系統為專為供應鏈管理人員設計的調補貨決策輔助工具,透過 AI 預測未來銷量需求,協助企業有效優化產能、庫存及配貨策略。 其整體系統架構包括: 1資料探索性分析功能:針對資料內缺失值提供自動化補值、自動編碼及自動特徵篩選功能。 2建模功能 : 1提供迴歸Regression、時間序列Time Series Forecast共兩類預測問題類型之模型訓練功能。nbsp 2支援 Auto ML 自動建模,並由系統推薦提供最佳模型,亦可建立集成模型提升模型準度。nbsp 3支援多種演算法類型:Random Forest, XGBoost, GBM等演算法。nbsp 4支援多種時間序列模型:指數平滑、ARIMA、ARIMAX、間歇性需求、動態複迴歸等模型。nbsp 5支援多種模型評估指標:R, MAE, MSE, RMSE, Deviance, AUC, Lift top 1, Misclassification等指標。nbsp 6支援自動切割訓練資料集及Holdout驗證資料集,並可手動調整比例。nbsp 7支援自動模型集成學習 Stacked Ensemble、平衡函數學習 Balancing Classes、早停法 Early Stopping。nbsp 8支援同時建立多個模型,系統將依照建模需求配置資源,讓建模、預測等任務擁有獨立的運算資源且互不影響,在整體伺服器空間有上限的情況下,運算資源能有效率被利用。nbsp 9具有記憶體運算In-memory computing功能,可藉由大容量及高速的記憶體進行運算,避免大量從硬碟中讀寫檔案,提高運算效能。 3資料串接功能: 運用API嫁接,採用完整的資料串接自動化,不需要手動匯入資料,提高使用者體驗。 4圖表分析功能:針對商品銷量提供視覺畫圖表及基本統計值。 AI數據分析解決方案具備兩大優勢: 1創業機台租售 低成本開設無人實體店與連鎖零售業合作,透過智能機讓創業者以低於店面租金的成本經營零售生意。提供機台買賣及租賃兩種合作模式,依業者評估選擇。 2多型態商品上架 24小時隨時隨地販售商品,可上架達60多種多樣化商品,透明大櫥窗提升商品能見度,定期補貨及追蹤商品販售狀況,依需求調整產品類型。 近來網路與實體界線模糊化,顧客互動方式大幅改變,消費需求多變且個性化,零售業面臨前所未有的挑戰和不確定性,掌握數據成為關鍵。AI 數據分析解決方案能幫助零售業快速活化大量資料,打造無縫的個人化體驗,最佳化營運價值鏈並提升效率,強化企業核心競爭力。

【導入案例】巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用
巨量遙測空間數據AI分析雲端服務平台 使衛星遙測影像順利落地應用

衛星遙測影像雖然可以讓地面景物無所遁形,然真正要能落地應用至產業面,還需要耗費大量時間與人力。為有效解決客戶面臨巨量影像資料消化困難及消除跨領域用戶對衛星遙測影像處理的技術障礙等問題,興創知能研發「巨量遙測空間數據AI分析雲端服務平台」,作為智慧空間資訊跨域AI應用導入的新開端。 近年來,為了因應產業全球化衝擊,臺灣農業轉型持續走向科技化與精緻化,紛紛從微氣候衝擊、病蟲害防治等問題的解決,來提升農作物的產量與品質。為了精確掌握作物的生長環境、農業對於影像的使用,有了無限擴張的需求。 在早年UAV無人機尚未盛行的年代,人工田野調查是最基本、卻也最消耗人力的工作,有了UAV無人機的出現,航拍操作也許不太困難,但能拍的範圍受限,要精確地擷取空間資訊,還需要測量專業。此時,衛星遙測數據的使用可能就此跳脫過去使用影像資料的想像。 國家太空中心TASA資料倉儲服務 在近十年,現代衛星遙測應用技術的突破,數位地球成了全球資料採集的新趨勢、各國紛紛發展資料立方的影像倉儲技術,各國發展智慧農業成了最大的影像用戶之一,掌握作物的栽種分佈,就是掌握作物產量的第一步,有了免費的衛星遙測影像、強大的資料倉儲支援,以及團隊穩健的影像辨識技術,是加速農業轉型的重要支持。 運用衛星遙測影像數據 可加速智慧農業發展 然而,在過去,想透過衛星遙測影像來萃取大面積作物分布,也是困難重重,所需要花費的費用不說,若想使用免費的資訊,必須逛透國際太空機構的網站,在琳瑯滿目的衛星產品規格表中,審慎評估感測器規格、影像解析度以及再訪週期,找到適合的影像後,還得一幅一幅的看,去蕪存菁,接下來,動輒數百MegabyteMB的影像資料、連續幾十張的影像下載存檔,所用的電腦容量恐不堪負荷。 還有,當克服影像存取、備好資料後,接著必須開始確認下載的影像產品,哪些才是想要的波段,因為眼前看到的影像並不只是一個圖檔jpg或png,複雜的多光譜資訊、屬性欄位和座標資訊,光是確認正確的資訊,就耗費龐大心力。 而面對功能複雜的GIS套裝軟體,又是另一個麻煩的開始,複雜的影像前處理流程,以及缺乏彈性的機器學習套件,大幅降低分析資料的效率。好不容易做出作物辨識的結果,才發現可能已經過了圖資使用的黃金時期。上述複雜耗時的衛星影像處理問題,恰恰就是市場的痛點, 興創知能從傳統的機器學習擴展到現代的深度學習應用,研發在GeoAI框架下的「巨量遙測空間數據AI分析雲端服務平台」,為客戶突破這些空間資訊的魔鬼細節。 AI分析雲端服務平台流程導入前後之差異 興創知能表示,在我國國家太空中心TASA, Taiwan Space Agency的多年努力下,屬於臺灣的ODCOpen Data Cube系統也已打造完成啟動服務,與國際趨勢正式接軌,強大的倉儲技術讓使用者可以輕易的根據需求,擷取並使用特定時間與空間範圍的影像資料,倉儲收納了國際太空機構旗下的多個衛星影像資源,包含ESA的Sentinel-1每隔6日一幅、Sentinel-2每隔6日一幅,USGS的Landsat-7每隔16日一幅、Landsat-8每隔16日一幅,以及國內自有的Formosat-2每日一幅與Formosat-5每隔2日一幅。 以Python語言為基礎 興創知能開發衛星影像辨識工具 擺脫GISGeographic Information System套裝軟體的侷限,興創知能以Python語言為基礎,整合GDALGeospatial Data Abstraction Library,並考慮運算效率與平行處理,完成所有衛星影像處理與影像辨識建模所需的工具開發,包含座標系統與資料格式的轉換、網格與向量資料互動,以及資料內差與正規化等工具,都是以AI應用為考量進行設計,而部分常用的工具更以TronGisPy為名,打包為開源套件造福技術社群。 興創知能善用團隊對衛星遙測影像的了解,以及透過所蒐集的標記資料作物分佈圖資,預設好影像辨識建模過程,所需的訓練資料規格與資料集定義,套用事先完成的機器學習LightGBM或深度學習CNN框架,並讓整個訓練過程在Web GIS的介面中,提供使用者部分的彈性,自由篩選影像、確認時空範圍、選用模型與超參數調整。除了訓練模型的操作,也提供歷史模型的運用產出辨識結果,最終讓作物分佈的辨識結果展示在Web GIS圖台。 事實上,不僅只是農業才會有衛星遙測的應用需求,隨著各行各業為了提升企業全球性的競爭能力,空間資訊的智慧化應用也大幅度的出現在各種領域之中。舉例而言,擁有大量圖資的測繪業者,能夠透過AI分析雲端服務平台 ,收納圖資的同時也加速數化製圖的效率;在全球氣候劇烈變化與致災性地震風險之下,產業保險類別豐富,農業保險、金融保險或是災害保險,都與空間資訊脫離不了關係,透過遙測影像辨識掌握保險標的早已成為國際趨勢。 巨量遙測空間數據AI分析雲端服務架構