:::

【109年 應用案例】 核電廠「不玩了」 安全管理智慧化更重要

廠區安全為工業安全的一環,目前的做法為設置許多監視器配合安全人員的人為監控來提供資訊,但人員監控有其極限,若能建置 AI 系統輔助進行異常行為與臉部辨識,可以更有效協助安全人員的監控工作,彌補人為監控的死角。

位於新北市石門區的核一廠,背山面海、風景秀麗,然而,此一全台首座核電廠將邁入除役期,即將成為歷史。適逢核電廠正準備進行除役作業,未來將有許多外部廠商進出施工,出入管理複雜,外部廠商施工也需要持續進行安全監控以確保核能安全;另外,核四廠雖正在封存中,但仍有敏感性區域與降低人員駐點的需要,因此對於安全管理的智慧化有急迫的需求。

資策會AI團隊在台灣核能級產業發展協會的協助下,以台灣電力公司核一廠場域為目標,欲解決低人力配置狀況下,安全與工安之相關議題。根據訪談之後,歸納出核一廠導入 AI 的技術需求,包含人員進出管制、與人員作業與廠區的安全性監控等。

AI人臉辨識 解決人員進出管制與廠區安全監控兩大難題

在人員進出管制部分,在核電廠部署臉部辨識系統,藉由人臉的唯一性與AI 的高辨識率,提升核電廠的人員進出管制成效;在人員作業與廠區安全部分,也將部署異常行為偵測系統,藉由監視器視訊提供的人員姿態,以 AI 辨識異常或危險行為,即時提供資訊回報給安全人員進行處理。

經過資策會媒合,選定旺捷智能感知公司(簡稱旺捷)的解決方案,分別投入臉部識別與姿態識別兩項功能之開發。旺捷智能與資策會數次討論,最後導入Google的Facenet與Posenet兩項演算法進行系統實作,相對於其他類似的演算法,Facenet每張人臉僅需要128個維度就可以達到最佳效能,所需要的辨識照片也只需要數張,對建立工業級的臉部識別系統來說非常適合,這也是最終決定所採取的方案;Posenet運用於動作偵測,透過Data Processing Unit(以下稱DPU)將資料轉換為機器學習演算法–支援向量機(Support Vector Machine,SVM)能夠接受的格式,進行人體姿態辨識,預測方式為二元分類,分別為跌倒以及非跌倒。

運用可視化頁面 管理介面一目瞭然

兩個系統的使用者介面以Python的網頁框架Flask進行實作,透過網頁服務來適應不同作業系統,達到跨平台系統的目的。眼鏡App則以Unity進行開發,存取網頁資訊。

近年來,由於AI 技術的進步,人臉識別已逐漸應用在安全管理,人臉特徵的唯一性可以去除 RFID 變造的風險,與其他生物資訊辨識 (指紋、聲紋) 相較之下的高正確率、完全客觀沒有人情因素、系統易於架設與維護、運作時可完全自動無需額外人力等。無需置疑地,在安全管理機制中,加入臉部辨識系統可以大幅提高廠區的安全係數,同時降低管理的困難。

人體姿態辨識在實驗室中的運作狀態

▲人體姿態辨識在實驗室中的運作狀態

台灣有四座核電廠,需要負擔龐大的管理成本,若能持續導入AI技術解決方案,不僅可降低人力成本,安全管理的效益也能大幅提升。

推薦案例

【解決方案】優式AI智能割草機器人 搶攻高爾夫藍海市場
優式AI智能割草機器人 搶攻高爾夫藍海市場

一台看似掃地機器人的AI智能割草機器人,在面積達30公頃的高爾夫球場草坪上來回穿梭進行除草工作。這是由國人自主研發與設計的AI智能割草機器人,此種機型搭載全球首創電子圍籬定位技術,可利用高精準定位的GPS功能結合雲端AI計算最割草路徑,已計畫搶攻高爾夫球藍海市場。 這款AI智能割草機器人由成立於2019年的台灣新創公司優式機器人進行研發,優式機器人總經理陳招成曾擔任台灣前5大ODM科技公司的執行副總經理,擅長軟硬整合工作。在他擔任服務型機器人聯盟總召集人時,就深知在少子化、人力漸趨吃緊的情況下,服務型機器人勢必成為高度成長的產業。 新需求》園藝市場規模大 剛性需求殷切 「發展服務型機器人核心技術,一定要找到剛性需求,綜觀歐美國家,人工短缺,然園藝需求增加,園藝工長年短缺7-10」,在此「剛性需求」強烈的情況下,陳招成成立優式機器人公司,第一個產品就是研發AI智能割草機器人。 以國外來說,美國是全球最大的園藝市場,佔全球產值高達30-40,估計約有100萬名園藝工,然近年來皆處於7-10的缺工狀態,遲遲無法改善。主要缺工原因為:人口老化,加上園藝工作靠勞力工作吃重,年輕人不想做。而不像在台灣,歐美國家對於草坪維護十分重視,並明文規定不除草,將觸犯法規予以重罰,因此,AI智能割草機器人的市場發展潛力相當大。 藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔 優式機器人所開發的AI智能割草機器人已研發至第二代,包括國內大學院校及知名美術館使用最新機型M1,同時也在美國包括一些全球知名的高科技公司,及知名的大學院校等實際場域中運行,正進行後續商務合作的洽談中。 優式機器人表示,目前使用的專業RTK系統,可以將原本GPS定位的誤差從數十公尺縮小到2公分左右,讓機器人在戶外也可以精準的移動。簡單設定邊界後,便能透過APP輕鬆地進行作業。 新應用》導入高爾夫球場 解決人力老化及短缺問題 陳招成進一步說明,國土測繪局是RTK的服務商,RTK將定位點的誤差參考圖提供出來,優式機器人透過4G上網,即可抓取特定位置的定位誤差值。再透過優式機器人的AI演算法,將原本一般GPS 10-20公尺誤差值縮短到2公分。定位好之後,優式機器人再運用六軸加速器定位、陀螺儀、輪子的輪差等感測裝置導入,進行軟硬整合工程,搭配輪子的運動模式和地形的契合,才能達到精準的除草路徑規劃。 這款寬度62公分、長度84公分、高度 46公分,重量只有25公斤的智能割草機器人可以在雲端將割草邊界設定完成,可以透過設定避掉水池與沙坑,用AI演算法自動計算出最佳路徑,一小時可除草面積大約是150坪,電池可以連續使用6小時以上,電池續航力是目前全球最高。 除了一般園藝公司外,在經濟部工業局AI計畫團隊的協助下,將優式機器人的AI智能割草機器人導入高爾夫球場的割草應用。 位於台中市太平區的知名高爾夫球場現有場務人員5人,負責整個球場30公頃的草坪、植栽維護、及其他景觀維護工作。但因場務人員平均年齡高達55歲,且長期無法招募到新的場務人員,針對場務人員的老年化及人力的短缺,希望能尋求AI科技的導入來減緩衝擊,因此藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔。 新挑戰》因應草種不同 需藉由專家系統克服困難 「這款AI智能割草機器人具備低噪音、低汙染、低人力成本及防水、防盜等配置,在割草的過程中,能透過超音波感測器辨識避開障礙物,並同時保持除草品質,維持美觀一致的割草長度」,陳招成接著表示,高爾夫球最重要的是草紋要漂亮、不能有病蟲害。 根據場勘後發現,高爾夫球場地主要分為果嶺、球道及長草區三大區塊,長草區以現行機器人除草沒有問題,20度以內的斜坡道都能夠克服;球道區的短草只能維持兩公分,草種也不同,需要修改刀盤設計;至於果嶺區的草因為影響到推桿速度,不僅要除草,還要壓草至與地面貼合,草的方向要一致,諸多因素均會影響到果嶺指數,這部分需要更多的研究與測試。 AI智能割草機器人能透過超音波感測器辨識避開障礙物,並同時保持除草品質 AI智慧割草機器人內建攝影鏡頭,可以用來偵測草坪的健康狀態,陳招成表示,未來也將導入專家系統,及早判斷草坪是否有病蟲害或水分足夠與否,將草坪健康數據分析提供給客戶參考,可及早防範與因應,以減少災害損失。 本身也是高爾夫球好手的陳招成表示,台灣高爾夫球發展得很好,然而,受到氣候多雨潮濕、有颱風等天候因素影響,與國外一流球場比較,台灣的高爾夫球場土質偏硬,坑洞較多,若智能割草機器人要普遍導入高爾夫球場仍有許多困難必須克服。但因台灣的困難地形造就很好的試煉場所,一旦台灣能夠克服諸多問題順利導入,就能擴展到海外市場,搶攻新的藍海市場商機。 優式機器人總經理陳招成

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。

這是一張圖片。 This is a picture.
測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。