【109年 應用案例】 AOI封銲製程全面檢測AI化,減少50%篩檢量
微型化產品、客戶要求全檢
台中某國內上市電子元件業者,因應5G世代將為石英元件產業注入新的成長動能,尤其在5G商機爆發下,石英元件的重要性將比過去在消費性產品上扮演更重要的角色。
針對產品不良因素的分析能力,頻率元件走向微型化的同時亦要求高精度,因此製程環節更容易遭受細微因子影響,業者需掌握更全面包括人機料法環各環節數據進行分析,因此需設法如何在複雜生產環境中,儘快找出關鍵不良因素。
瑕疵認知不同,品質一致性難提升
隨著電子元器件的微小化、複雜化趨勢,在產線中視覺檢測有四大主要功能,包括量測、辨識、定位、檢查等,而檢查是所有功能中最困難的部分絕大部分電子製造廠商仍然依賴於傳統人工目視檢查。
以目前AOI(自動光學檢測)技術滲透率最高的PCB行業為例,曾有研究機構做過調查,當兩個人檢查相同的PCBA板四次時,他們的相互認同率少於28%,認同自己的只有大約 44%左右,由於現場人員對瑕疵的認知不同,因此即便是已然自動化的機器視覺,仍會存在因系統設定或現場品管人員不同,導致出貨產品品質無法一致性的問題
偲捷科技檢測AI化,降低過篩率20%~30%
輔導團隊與偲捷科技合作,針對其封銲製程下的瑕疵,以CNN( Convolutional Neural Network )為基礎,透過整合多個模型的方式導入AI辨識模組,利用視覺辨識技術輔助AOI檢測的後續優化,以提高檢測設備的辨識正確率。
預估導入AI視覺辨識後,將可有效降低過篩機率至20~30%。因此產業在需要更智慧化的檢測系統條件下,開始應用AI技術來輔助AOI設備進行後續篩檢的優化。
▲AI化AOI 檢測解決方案Cross-Model設計概念
▲封銲AOI檢測試煉結果
降低誤殺率,減少目檢員50%篩檢量
本計畫以深度學習網路架構,重新分類經檢測出的瑕疵,包括真瑕疵與假瑕疵,並可將真瑕疵與假瑕疵進一步分類,降低傳統AOI方案的誤殺率,預期可再協助目檢員減少50%以上的檢測篩檢量,解決現行生產線仍需仰賴大量人力複檢、效率低落的問題。
未來目標結合機械手臂,進行自動上下料,並針對瑕疵成因進行分析,優化生產製程參數。