:::

【109年 應用案例】 紡織業挑戰快時尚,AI庫存預測降低三成五誤差率

服飾快時尚、少量多樣、短交期

紡織產業面臨服飾品牌快時尚趨勢衝擊整體紡織供應鏈,全球品牌通路都推動零庫存、短交期與少量客製化,生產時間、品質、成本難以平衡,面對品牌商對ODM的預測與實際需求常有落差,造成物料管理與大量庫存成本積壓的問題。

由於客戶預測需求不準確,常導致備料困難,備料太多會增加積存量、備料太少可能延誤交期。本計畫規劃以國內一級供應製造商為對象,建立各客戶專屬的物料需求AI預測模型

AI計算銷售趨勢,進而預測需求

輔導團隊與神通資訊科技合作,計畫主要透過LSTM演算法來做為AI的基礎,主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計上使用簡單迴歸,乃至複雜的『時間序列分析』(Time Series Analysis)來預測銷售趨勢,因為,當期的銷售量通常會與前期的銷售量有緊密的關係,除非公司發生重大事件,否則,應該會循著規律變化。

銷售量預測的樣態很多種,包括營收、利潤、來客數、遊園人數、銷售產品數/金額、...等等,都屬於同一範疇,以下會以工廠的每月出貨批數為例,使用 LSTM 模型預測下個月的出貨批數。

物料需求分析方案執行架構

▲物料需求分析方案執行架構

本計畫規劃以客戶為對象,建立各客戶專屬的物料需求AI預測模型,規劃階段使用三種機器學習演算法試作物料需求AI預測模型:

 Logistic Regression Algorithm (羅吉斯迴歸)

 Gradient Boosting Algorithm (梯度提升法)

 Deep Learning Algorithm (深度學習法)

物料需求AI預測模型規劃

▲物料需求AI預測模型規劃

需求預測誤差自最高70%降至35%,降低備料庫存量

本計畫將客戶預估需求、所需物料類別、供應來源、客戶交期等資訊,以機器學習的方式,建立主要原物料的採購預估系統,將該客戶前五大國際客戶需求量預測誤差自最高70%降至35%,大幅減輕庫存之備料量。

推薦案例

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇

綠能是未來趨勢,必帶動未來龐大商機。而風力發電是近年全球矚目綠色能源之一,將成為我國再生能源重要生力軍、幫助台灣發電量於2025年達到20的目標,以提高台灣能源自主性。隨著國內風力發電機風機組數量和電量逐年增長,如何讓儲電設備達到安全、長效性、充放電不易衰減和永續低碳又環保的技術能量顯得格外重要,同時風機設備本身的健康檢測、保養與維修也成為風場業者關注焦點。為滿足風場客戶需要,華鉬實業旗下綠能事業部門推出長效儲能的全釩液流電池電解液及風機AI預測性運維,提供100安全、長效性且可降低客戶初製成本的電力儲能設備,並透過AI預測性運維服務協助客戶降低發電度成本10,節省最多30維護保修成本。 華鉬實業成立於1998年,本業以提煉釩、鉬及稀有金屬元素等製品起家,並運用於高階鋼鐵、專業化工及特用化學品等行業,而釩更如同煉鋼的維他命可加值煉鋼的成效。其中釩、鉬相關製品為公司主力項目之一,公司看見100以釩元素為主的全釩液流電池在長效儲能上未來將是相當被看好的綠能技術主流,並且2010年以前政府已積極請法人如工研院在固態電池和全釩電池進行相關零組件材料投入研究,再加上經濟部期許再生能源在2025年發電量佔比達20目標並達15GW,基於上述考量,華鉬實業決定於2017年全力研究與投入自主開發的全釩液流電池電解液的技術開發,以藉此加速2025年再生能源的達標率。 華鉬公司指出「再生能源的電源較不穩定,而台灣本身缺乏鋰資源,在鋰電池製造上幾乎80-90電池芯必須倚賴國外採購,缺乏100國內自足自給的儲能資源與技術。」同樣地,對於本身沒有天然釩礦資源的台灣是如何克服呢 為此,華鉬實業利用獨創技術,透過石化業如中油煉油廠或台朔石化製程中的廢觸媒,其中有高達10釩離子成分可提煉出高價值的釩礦資源,藉此生產出台灣100自主自製的全釩液流電池電解液且不受資源影響,有效達到資源循環再利用。自2017起華鉬實業已成功打造出全釩液流電解液技術,並順利通過工研院和核研所及多家國際大廠的產品驗證。 台灣在儲電能量目標於2025年要達15GW,其電力分配包含500MW於台電的自動調頻系統、500MW於E-dReg及500MW於既有或新設的太陽能電廠,以太陽能電廠的用電使用為例,主要以下午4點到晚上10點用為民生用電尖峰時段,為此,能源局特別要求台電必須加強儲能設備的升級,也因此帶動市場上對全釩液流電池儲能系統設備的高度需求。另外,台灣在目前總儲備電能的建置與貢獻尚未達到100MW,距離2025年目標15GW儲電量仍差距15倍以上。 運用全釩液流電池 成功打造100安全、低碳環保又長效性儲能系統設備 相較於鋰電池的短效電力儲能,全釩液流電池的最大優勢為全球公認可長效性的儲備電能,可以長時間儲能達12小時,代表若充12小時電力,則可以釋放12小時電力。相較於一般儲能系統的計電方式也就是每日用電度數功率以千瓦為單位 x時間以小時為單位,對全釩液流電池而言,功率和小時數是各別設計,該功率又稱為電堆,是由金屬、高分子模、碳氈和石墨板等四種材料組成,而該用電時間改以電解液的量以立方體為單位來計算,因此當功率電推 x電解液的量我們每日運用全釩液流電池儲能的用電度數。 全釩液流電池儲能系統設備之產品特色方面,包含安全性、長效性、充放電不易衰減和永續低碳環保性等四大特色。全釩液流電池品質是100安全,由於電能是儲存在含釩的電解液中,能避免儲飽電的儲能系統造成任何易燃事故發生。在電池壽命上,相較於鋰電池的電池壽命短暫,全釩液流電池透過價數變化可高達20-25年以上電池壽命。對於儲能的充放電性能,不像鋰電池有一定充放電次數5000-600次,全釩液流電池的充放電次數是沒有限制性的。對於全球高度重視的零碳排放,不同於鋰電池有回收議題,全釩液流電池的電解液可永久使用,該電堆材料成分是環保的且可完全回收,以打造真正永續性又低碳環保的儲能系統。 陸域風機AI預測智慧運維 讓客戶降低發電度成本10 省下維護保修成本高達30 華鉬實業不只透過全釩液流電池儲能系統設備提高再生能源客戶長效儲電效能、協助客戶降低初置成本,更透過離岸與陸域風機AI智慧運維實證計畫在台電的陸域風場的場域實證,積極累積自家在AI預測性運維的技術經驗和能量。在經濟部工業局AI HUB計畫支持下,合作場域將以台電公司路域一期風場為主並提供6個月以上風機的智慧運轉數據進行分析。本次陸域風機的AI預測運維系統,採用機器學習方式,主要技術提供者來自英國British PetroleumBP石油集團的子公司ONYX Insight,該公司透過AI Hub分析軟體技術進行台電面臨的風機痛點分析,包含路域風機的發電量損失和陸域風機的關鍵零組件如齒輪箱、變槳軸承hellip在異常震動三維的振動頻率或異常溫度等狀態下進行損壞預測等報告產出。透過本次落地實證可有效協助台電降低發電度成本10,增加資產價值12,節省最多30維護保修成本。近三年ONYX Insight在全球已成功預測運維2萬台以上離岸或陸域風機,累積極高的AI模型準確率。相信透過與ONYX Insight建立的國際合作夥伴關係,將有效輔導並加速華鉬實業的綠能事業部在邁向成為風機AI預測性運維的獨立科技服務提供者之目標與布局。 與合作夥伴ONYX insight提供客戶AI預測運維系統,包含風機發電量損失與風機關鍵零組件之損壞預測 厚植國內風機運維的基礎 以台灣為基地 拓展到東南亞風場 離岸風機AI預測性運維未來在台灣將超過300億台幣的的市場產值,儲能市場在全球更是有千億美金以上的產值,在未來公司願景,華鉬實業期許能成為釩液流電池電解液及風機AI預測性運維的獨立技術服務提供者。而長期目標,透過累積豐厚技術及實績資本,在世界各地建立釩液流電池電解液之在地供應鏈,就近供應產業需求。

【解決方案】優式AI智能割草機器人 搶攻高爾夫藍海市場
優式AI智能割草機器人 搶攻高爾夫藍海市場

一台看似掃地機器人的AI智能割草機器人,在面積達30公頃的高爾夫球場草坪上來回穿梭進行除草工作。這是由國人自主研發與設計的AI智能割草機器人,此種機型搭載全球首創電子圍籬定位技術,可利用高精準定位的GPS功能結合雲端AI計算最割草路徑,已計畫搶攻高爾夫球藍海市場。 這款AI智能割草機器人由成立於2019年的台灣新創公司優式機器人進行研發,優式機器人總經理陳招成曾擔任台灣前5大ODM科技公司的執行副總經理,擅長軟硬整合工作。在他擔任服務型機器人聯盟總召集人時,就深知在少子化、人力漸趨吃緊的情況下,服務型機器人勢必成為高度成長的產業。 新需求》園藝市場規模大 剛性需求殷切 「發展服務型機器人核心技術,一定要找到剛性需求,綜觀歐美國家,人工短缺,然園藝需求增加,園藝工長年短缺7-10」,在此「剛性需求」強烈的情況下,陳招成成立優式機器人公司,第一個產品就是研發AI智能割草機器人。 以國外來說,美國是全球最大的園藝市場,佔全球產值高達30-40,估計約有100萬名園藝工,然近年來皆處於7-10的缺工狀態,遲遲無法改善。主要缺工原因為:人口老化,加上園藝工作靠勞力工作吃重,年輕人不想做。而不像在台灣,歐美國家對於草坪維護十分重視,並明文規定不除草,將觸犯法規予以重罰,因此,AI智能割草機器人的市場發展潛力相當大。 藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔 優式機器人所開發的AI智能割草機器人已研發至第二代,包括國內大學院校及知名美術館使用最新機型M1,同時也在美國包括一些全球知名的高科技公司,及知名的大學院校等實際場域中運行,正進行後續商務合作的洽談中。 優式機器人表示,目前使用的專業RTK系統,可以將原本GPS定位的誤差從數十公尺縮小到2公分左右,讓機器人在戶外也可以精準的移動。簡單設定邊界後,便能透過APP輕鬆地進行作業。 新應用》導入高爾夫球場 解決人力老化及短缺問題 陳招成進一步說明,國土測繪局是RTK的服務商,RTK將定位點的誤差參考圖提供出來,優式機器人透過4G上網,即可抓取特定位置的定位誤差值。再透過優式機器人的AI演算法,將原本一般GPS 10-20公尺誤差值縮短到2公分。定位好之後,優式機器人再運用六軸加速器定位、陀螺儀、輪子的輪差等感測裝置導入,進行軟硬整合工程,搭配輪子的運動模式和地形的契合,才能達到精準的除草路徑規劃。 這款寬度62公分、長度84公分、高度 46公分,重量只有25公斤的智能割草機器人可以在雲端將割草邊界設定完成,可以透過設定避掉水池與沙坑,用AI演算法自動計算出最佳路徑,一小時可除草面積大約是150坪,電池可以連續使用6小時以上,電池續航力是目前全球最高。 除了一般園藝公司外,在經濟部工業局AI計畫團隊的協助下,將優式機器人的AI智能割草機器人導入高爾夫球場的割草應用。 位於台中市太平區的知名高爾夫球場現有場務人員5人,負責整個球場30公頃的草坪、植栽維護、及其他景觀維護工作。但因場務人員平均年齡高達55歲,且長期無法招募到新的場務人員,針對場務人員的老年化及人力的短缺,希望能尋求AI科技的導入來減緩衝擊,因此藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔。 新挑戰》因應草種不同 需藉由專家系統克服困難 「這款AI智能割草機器人具備低噪音、低汙染、低人力成本及防水、防盜等配置,在割草的過程中,能透過超音波感測器辨識避開障礙物,並同時保持除草品質,維持美觀一致的割草長度」,陳招成接著表示,高爾夫球最重要的是草紋要漂亮、不能有病蟲害。 根據場勘後發現,高爾夫球場地主要分為果嶺、球道及長草區三大區塊,長草區以現行機器人除草沒有問題,20度以內的斜坡道都能夠克服;球道區的短草只能維持兩公分,草種也不同,需要修改刀盤設計;至於果嶺區的草因為影響到推桿速度,不僅要除草,還要壓草至與地面貼合,草的方向要一致,諸多因素均會影響到果嶺指數,這部分需要更多的研究與測試。 AI智能割草機器人能透過超音波感測器辨識避開障礙物,並同時保持除草品質 AI智慧割草機器人內建攝影鏡頭,可以用來偵測草坪的健康狀態,陳招成表示,未來也將導入專家系統,及早判斷草坪是否有病蟲害或水分足夠與否,將草坪健康數據分析提供給客戶參考,可及早防範與因應,以減少災害損失。 本身也是高爾夫球好手的陳招成表示,台灣高爾夫球發展得很好,然而,受到氣候多雨潮濕、有颱風等天候因素影響,與國外一流球場比較,台灣的高爾夫球場土質偏硬,坑洞較多,若智能割草機器人要普遍導入高爾夫球場仍有許多困難必須克服。但因台灣的困難地形造就很好的試煉場所,一旦台灣能夠克服諸多問題順利導入,就能擴展到海外市場,搶攻新的藍海市場商機。 優式機器人總經理陳招成

【導入案例】汙水處理的救星 結合大數據與AI技術打開環保產業另一片天
汙水處理的救星 結合大數據與AI技術打開環保產業另一片天

隨著水資源枯竭與環保需求,汙水處理廠導入AI技術來協助觀測預警的需求日益增加,中欣行的汙水處理結合大數據與AI技術,打開環保產業另一片天,未來除了提升汙水處理產業的科技動能,更能夠推廣到其他類型產業,促進科技與經濟發展。 創立於民國69年的中欣工程行後更名為中欣行股份有限公司,為國內操作維護專業領域最具規模及技術之大型環保公司。中欣行進行的污水下水道系統操作維護工作實績遍佈全台,包括科學園區、工業區、國際航空站、學校、集合式住宅、國家公園及工廠等。 汙水廠導入AI系統 精準縮減加藥時間與降低水質超標罰款風險 中欣行於位於新竹科學園區汙水處理廠導入「AOMBR碳源與曝氣之智能強化控制系統開發」,能精準預測風量控制與縮減加藥時間,降低動輒上百萬的罰款風險。 中欣行表示,因應先進產業蓬勃發展及放流水標準漸趨嚴格,當設備控制失之毫釐,水質將差之千里。 近年污水處理設施多已加入設備自動控制之功能,現場狀況卻常常與學理略有偏差,導致很多情況下良好的處理技術需因地制宜,時時滾動時時調整,方能達到良好的出流水質控制。「放流水的水質越來越好,操作人員壓力只會越來越大。這是中欣行最大的痛點」,一位內部主管不諱言地說。 定期的水質檢測與設備保養維護,能確保放流水低於法規標準。 也就是說,每天操作人員需掌握設備與水質狀況,若有突發的進流水質異常或設備跳機,問題環環相扣下就會產生污染,所以每天除了做好維護保養與檢測的工作,更需要緊盯儀表板隨時確認系統正常,不僅耗費人力也耗費精神。 中欣行的現場操作人員24小時輪班,時時盯著放流水的質量監測,加上要採檢水質進化驗室檢測分析,一旦汙水處理值未符合要求,就需要受到環保單位與受託單位的行政與契約罰款,也對對於員工心理造成不小的壓力。 中欣行長期以來建立累積的水質資料與員工間傳承的豐富經驗,已能全盤瞭解整個系統的操作特性,也能透過設備或水質資料的關鍵訊號,抓出處理單元的問題。如果能透過AI技術導入,代替人力檢測汙水來源,透過發生預警訊號進行系統性的評估,就能夠大大減輕人員的壓力。 反應時間由8小時縮短至4小時 節省一半時間 於是,中欣行導入「AOMBR碳源與曝氣之智能強化控制系統開發」,運用所累積的汙水數據資料,加上操作人員現場經驗的口述,透過AI技術的輔助與環境工程學理的支持,便能有效控制生物處理單元中重要的關鍵參數:碳源加藥量與曝氣量,透過污水處理的AI化,使污染物去除、微生物生長、設備節能及操作節藥之間取得平衡,獲得合理化的操作控制參數。 水處理碳源及曝氣參數調整步驟從數據蒐集、模型訓練到預測驗證。 長期來看,納入歷史資料的計算後,確認處理系統承受能力的上下限,AI便能在已知的邊界條件範圍中,不僅記錄過去曾經發生水質與設備作動特徵,更能透過模式預測,找出最佳解法,提供藥品使用、能源節用、減少溫室氣體排放及去除污染物的最佳成效。 根據中欣行估算,原本因為人工調整參數易造成誤差,控制反應時間需要耗費8小時,透過AI技術導入,除可降低誤差值,也能將控制反應時間縮短至4小時,節省一半左右時間。進而提升人員周轉率,更有效降低員工操作失誤造成的心理壓力,自然也減少水質超標罰款的風險。 Dashboard數位儀表板示意圖