:::

【109年 解決方案】 隨時量體溫、防趴趴走,AI助武漢病毒隔離一臂之力

新型冠狀病毒疫情持續延燒,檢疫及隔離人數節節攀升,成為管理人員「不可承受的重」,司圖科技與邁特電子、愛微科、串雲科技等異業聯盟,共同打造COVID-19「居家隔離個人定位追蹤系統」,解決隔離人趴趴走、防疫追蹤的漏洞。

2020年2月12日午後,新型冠狀病毒疫情方興未艾,有居家隔離者到處趴趴走,引發人心惶惶,一個個擔憂的神情埋在白色的口罩底下。而在台北舉行的一場「公有雲場域定位與監測研討會」,卻意外促成一個重要的防疫聯合陣線。

由司圖科技、邁特電子、愛微科、串雲科技等老店、新創組合而成的聯盟,共同推出COVID-19「居家隔離個人定位追蹤系統」,在隔離者的居所,無論是集中隔離處,或是居家裝設體溫監測平台,透過自動化回報過程,遇到異常狀態,立即通報,即可有效降低防疫人員奔波壓力,同時遏止隔離者輕易離開居所,以防堵防疫追蹤的漏洞。

居家隔離體溫關懷系統架構圖

▲居家隔離體溫關懷系統架構圖

居家隔離趴趴走 防疫手機不夠用

新冠病毒的確診人數攀升,為了有效防堵社區感染,中央流行疫情指揮中心明定,所有入境者,需施行個別居家隔離、居家檢疫及自主健康管理等措施;其中居家隔離、居家檢疫者必須在家中休養 14 天且不得外出,期間由里長、派出所人員等第一線人員落實每日至少兩次的體溫監測。

然而,隨著疫情越演越烈、須居家檢疫14天的民眾數量暴增,設備與人力面臨供不應求的困境。包括中央提供的2,000支定位監控手機不敷使用;負責管制的防疫人員數量有限,工作壓力卻日益升高等等,亟待透過科技工具來協助解決。

司圖科技創辦人暨CEO 林詩頎表示,COVID-19「居家隔離個人定位追蹤系統」分為硬體及軟體部分,硬體又分為愛微科的體溫貼片及串雲科技所提供的無限定位裝置(USB接收器),貼片要貼在隔離人的腋下,24小時皆可量測體溫;接收器則是將體溫資料、定位資料上傳至司圖科技的雲端定位引擎,由司圖科技進行資料判讀及追蹤體溫趨勢的變化,可精準預測該人員確診的可能性。

居家隔離體溫關懷系統比較圖

▲居家隔離體溫關懷系統比較圖

體溫量測+室內定位系統 降低社區感染的可能性

司圖科技於2015年正式成立,共同創辦人背景涵蓋室內定位、機器人平台、影像圖學、機器學習、雲端運算等領域。林詩頎表示,現階段不論是集中檢疫、集中隔離、居家檢疫或居家隔離,所統一發放的防疫手機GPS系統,有兩項缺點,一為解析度過大;二為無法追蹤垂直移動,也就是說,一旦隔離人到樓上或樓下串門子,或是從這個房間移到另一個房間,無法偵測出來,將大大增加社區感染的可能性。

與傳統方式相較,司圖科技的定位感測系統利用多種設備,包含光學鏡頭、光達(LiDar)、超音波等,建構如室內Google車的方式感應各個點的無線訊號,累積了大量且全面的數據,建構出精準的平面圖。簡單來說,可透過室內多個接收器所接收的無線訊號交叉比對,經由AI深度學習的方式,讓定位可突破空間限制,定位更加精準。

除了定位精準外,還可以經由分析隔離者移動軌跡及群組的移動性,追蹤其接觸史,能夠進一步掌握病毒感染途徑,提前預警,避免社區感染的可能性。

在管理端,運用電腦及大型電子看板可觀測到群體貼片(隔離人)的溫度、使用電量及訊號強度,一旦發生有隔離者離開隔離處所,會立即自動發出警示訊號,管理人員即可立即採取行動;另一方面,隔離者也可以透過手機紀錄自身體溫的變化,若有異常情況,也可以立即通知檢疫單位,進一步檢測是否確診。

防疫平台示意圖

▲防疫平台示意圖

這套系統從2月12日開始發想並成軍,短短一個多月的時間,已在台北市、新北市約50個床位規模的集中隔離處所進行實證,執行成效不錯,未來有機會擴大到工廠、辦公室等大範圍、高風險區域的溫度管理。而在疫情結束後,此套系統也可擴充運用至急診室、母嬰病房、月子中心及長照機構。

隔離者體溫管理介面

▲隔離者體溫管理介面

在全球疫情持續延燒的情況下,COVID-19「居家隔離個人定位追蹤系統」將有機會輸出海外,成為全球市場居家隔離、醫療檢疫好幫手。

司圖科技團隊

▲司圖科技團隊

推薦案例

這是一張圖片。 This is a picture.
AI缺陷智能化檢測-降低製程耗能智慧監控解決方案

AI缺陷智能化檢測-降低製程耗能智慧監控解決方案 當一片貼片陶瓷基板上有超過2萬顆貼片電阻,應該要如何快速檢測答案是用AI來檢測。 在當前科技迅速發展的時代,雷科自豪地宣布其雷射加工技術的顯著進步,這一突破得益於人工智慧AI領域的創新應用,雷科致力於將先進的AI技術整合至雷射加工機中,於2019年與合作廠商共同開發出全球第一台結合AI技術的雷射加工機,並以此為基礎上進一步在2023年打造了首台結合AOIAILASER的陶瓷載板檢測機。 智慧陶瓷載板檢測機 藉由AI與機器學習的導入,加上樣本大數據的累積,在系統愈變愈聰明的狀況下,使產品良率在一年內提升5、將檢測速度由原本2分鐘片大幅降低至20秒片、大幅降低了檢測成本、在前段有效率檢出與雷射標示後,可降低後段製程上的浪費,減少整體場域碳排、並可自動產出詳細檢驗報告,以進行數據分析與優化,有助於提升設備產能、降低人為疏漏,使雷科的設備產品更具價值、強化我國電機電子產業之國際競爭優勢。 雷科股份有限公司Laser Tek成立於1988年,並於2002年正式掛牌成為上櫃公司,成立迄今已成為具指標性之SMD電子包裝材料、SMT檢測設備、雷射設備等全球性銷售通路服務及設計製造商之一。 雷科總經理擁有20多年雷射整合經驗,他觀察到被動元件客戶每個月產能可超過10億顆SMD元件,但伴隨著SMD元件尺寸持續微型化發展,其生產製造時之瑕疵檢測作業變得更加困難,一片陶瓷基板上動輒上千上萬顆元件,元件尺寸越小,印刷雷射加工位置更加微小,檢測難度就越大,而更容易出現偏差,因此生產檢查成為相當重要的一環。 R-SMD生產檢查流程 AOI良率過殺問題,靠AI來把關 而AOI檢查機是普遍且成熟的機種,但市面上的高精度AOI運作方式是以單次拍攝小圖移動拼接成大圖,精度雖高但檢查時間較久,小尺寸SMD元件更易受環境干擾,如:光照和振動等容易造成誤判;因此AOI僅能以抽檢方式估算良率,且抽檢良率差的元件也並非單獨去除,而是連同良品整個剔除;人力複檢不但成本提高,每個人的檢查標準又無法統一,最終導致的結果,是平均會發生約2-5的產品未被檢出不良品而流入後段製程,即約每月至少2,000萬顆不良品之SMD元件,因未能在初期被檢測出,而造成後續各段製程中,不良品上依然會有印刷、加工檢查等流程,無論是油墨耗材及能源的浪費,增添了成本負擔,更因此加速設備磨損、使設備運作壽命簡短,而每一階段的浪費,皆會增加場域製程的碳排放量,不利於企業的碳足跡盤查。 0402修阻後樣品照片範例 傳統AOI 自動光學檢查的高誤判率也是業者面臨的一大生產痛點,在被動元件產業對於良率「寧可錯殺一百,不可放過一人」的高標準要求,往往會把 AOI 參數設定極高規格,導致設備異常敏感。當數據參數設定過於嚴苛時,易造成高誤判率。例如:當被動元件的汙染髒汙與印刷層顏色相近時,AOI 過篩誤判率可能高達 7 成。 汙染髒汙與印刷層顏色相近AOI易誤判 雷科有別於其他AOI供應商,捨棄了小圖拼接或線掃描方式,有效避免圖像處理時硬體或環境造成的資料遺失與斷差,採用超大面陣感光相機搭配訂製高解析度鏡頭,透過特殊影像進行合成處理。合成的過程中,感光元件的每個像素位置上都包含了從多個不同位置捕捉到的光線資訊。通過將這些資訊結合起來,影像的解析度和細節得以提高,達到億萬級別的分辨率,配合多重自動調整光源,單次拍攝可處理涵蓋7070mm,影像解析度可高達5um,取得清晰影像,再透過Smart-AI技術進行分析篩選。 三大妙法打造快速檢測Smart -AI 雷科總經理分享,快速將AI技術導入並減少檢查運算時間,並開發Smart-AI有三大方法: 方法一、先以AOI方式快速將良品與含爭議的缺陷品進行二分法區隔,將檢測重心放在少數不良的辨識上。 方法二、自動標註平台簡化訓練問題:運用攝影機蒐集機台的資料,用自動標註取代人工標註,逐步訓練以拉高精度,問題越簡單,訓練所需資料越少。 方法三、AOI與AI雙軌並進:在智慧製造流程中,僅僅單靠AOI或AI無法畢其功於一役,必須由AOI先行,將特徵值標出,同時區分是良品或是瑕疵部分,再以AI方式進行標註與訓練。接著利用可重複串聯的加疊效應,其檢測效益更大,隨著訓練資料累積越多,AOI比例降低,AI比例逐漸提高。 修阻後物件偵測與訓練 透過三大方法逐步構建系統信賴度,並將資料進行缺陷整理分類,最終將AI判斷結果回傳到主機,以雷射加工方式在製程前端控管將真正的不良品剔除,減少不良品流入其他站別,造成重複檢測或重複加工的損耗。 智慧雷射設備第一,選擇LASERTEK就對了 由臺灣品牌雷科持續打造結合AI智慧檢測與雷射加工設備,以逐步建構由原材料、產品、檢測、雷射設備等相互相加疊而成的智慧化監控解決方案,以降低生產製程之耗能為目標,落實發展半導體 載板及元件加工等領域,產出能在低碳條件下仍可滿足終端使用者需求之設備產品,以快速且優質的產品與服務來拓展國內、外需求市場,增加本土Made in TaiwanMIT設備之全球競爭力。

【解決方案】台灣軟體科技實力媲美國際 Golface智慧服務促高球轉型
台灣軟體科技實力媲美國際 Golface智慧服務促高球轉型

相較於日本9成的高爾夫球場沒有桿弟,均採取全自動化服務模式,台灣的高爾夫球場管理維運仍高度仰賴人力。面臨高達7成的缺工問題,導入場地管理與會員管理平台,提供高球智慧化服務,或許是高爾夫球場業者轉型應該慎重思考的課題。 「台灣的軟體技術已不輸國外,絕對有輸出國際市場的能力」,成立於2014年,成立初衷即以科技為核心,想打造台灣第一個高爾夫娛樂平台的綠夾克運動事業Golface公司共同創辦人暨執行長廖聰哲已深耕高球智慧化服務長達9年時間,他深諳高爾夫球場服務的「眉角」係指訣竅,服務要做到哪要怎麼服務球友需要甚麼管理者欠缺甚麼Golface已累積豐富的Domain knowledge領域知識,推出整套智慧高球解決方案。 全球首款聯網智慧高爾夫球車上路 自動化球場不再是夢想 5月中旬,Golface所研發的ARES Smart Golf Cat全球首款聯網智慧高爾夫球車正式上路,這款電動球車搭載專用的行車電腦主機、兩組獨立聯網系統、AI視覺辨識攝影機、高精準GPS定位系統等多項智慧輔助功能,球場可以放心讓球友自行開車下場擊球,同時也能即時監測球友是否有違規駕駛行為,有了數位消費軌跡,保險公司才願意承保。 具體作法是:球友在預約平台預約球車之後,取得一組QRCode,在平台上付費完之後,到球場上透過QRCode解鎖球車,就可以將智慧球車開到球場。球場管理平台就可以監控及限制球車可以行經的區域,不必擔心車會開出車道。使用完之後再透過球車平板返還球車,在這過程中,客人有違規行為直接在帳號內進行扣款,情節嚴重者將禁止受理球車使用。如此一來,就可以達到「無人化」目標。 ARES Smart Golf Cat為全球首款聯網智慧高爾夫球車,於2022年5月正式上線營運 「由於市場人力成本越來越高,桿弟招募與培訓不易是目前市場上共同面臨的痛點,日本有9成的球場沒有桿弟服務,台灣球場雖有桿弟,仍出現7成的人力缺口」,廖聰哲接著說,這款智慧球車平板電腦搭配手機APP,就成為最強的智慧桿弟,Golface正試圖拚上「自動化球場」最後一塊拼圖。 累積消費數位軌跡 進行客層分群進階服務 從消費者需求為出發點,Golface陸續推出球車平板電腦、手機APP、高爾夫球預約平台、教學影片Golface TV、高爾夫球旅遊及智慧球車。智慧球車已於5月上線營運,現階段有4輛,預估今2022年下半年會量產,不過,智慧球車現階段仍由球友自行駕駛,預計明2023年初可透過遙控駕駛,第三階段才會開放無人駕駛。 透過球車平板及管理系統,管理人員可以透過螢幕了解球場狀態,以視覺畫圖表呈現各球車的即時位置及相對位置、球車出發時間及服務客戶時間的多寡、服務哪些客人、每洞時間進行多久等資訊,有助於管理者掌握目前球場內的消費情況,以有效減少塞車,降低客訴的情況。 「以前都是用工作人員的人腦去想像,現在則可以運用圖像呈現場內即時情況。讓不懂打球的人也可以從事這項工作」,廖聰哲強調,以往場控均由有豐富經驗的職業選手擔任,現在缺工又需要專業人員從事此項工作,更加難找。因此,運用數位工具取代人力,將可收事半功倍之效。 球車平板電腦已進軍日本高爾夫球市場,設置於福岡世紀高爾夫球場 Golface的球車平板已導入國內14家球場,同時已正式進軍日本市場,獲得福岡世紀高爾夫球場青睞,將平板電腦設置在球車上,提供自動語音播報擊球策略、距離碼數、視覺化圖表顯示擊球數據等各項服務。在新冠肺炎COVID-19疫情期間,國境封閉,Golface運用OTA技術遠端軟體更新提供軟體更新與問題排除,使得服務不中斷,深獲日本球場肯定。 廖聰哲表示,台灣的軟體技術並不輸日本等其他國家,但仍需要更多球場支持,才能協助產業智慧化轉型。 「要協助高爾夫球場轉型,第一步驟就是要數位化」,廖聰哲指出,Golface幫助球場累積數據及資料,可以更了解客戶服務周期與擊球節奏,讓球場維持不塞車又可以服務更多客人,截至目前為止,Golface已累積2萬多支球隊、350萬張成績卡及1,000多萬筆的資料,透過所收集的資料與消費者行為,幫助球場提升管理績效、客層分群服務、降低客訴及離峰時段的行銷規劃均有相當大的助益。 Golface共同創辦人暨執行長廖聰哲深耕高球智慧化服務9年,將打造台灣第一個高爾夫娛樂平台

【解決方案】AI電眼取代人眼 慧演智能運用AI幫製造業做品管
AI電眼取代人眼 慧演智能運用AI幫製造業做品管

因應製造業少量多樣的客戶需求,亟待可以找到從雲端到終端的AI解決方案。慧演智能提供軟硬整合解決方案-BailAI影像檢測解決方案,來協助傳統製造業提升製程效率及產品品質,達到轉型的初步目標。 政府宣示2017年為台灣「AI元年」之後,台灣AI新創公司如春筍般林立,成立於2018年的慧演智能即鎖定智慧製造,提供AI影像分析與流程優化的平台,以深度學習的方式檢測產品的瑕疵和組裝的步驟異常,協助企業建置從終端到雲端的基礎設施,讓工廠生產端可以自動化監控,以提升製程的效率和品質。 熟悉產線品管流程 以AI影像檢測作為創業主軸 慧演智能創辦人暨執行長劉雅雯年紀輕輕,在大學畢業之後即進入製造業,在硬碟零件的塑膠射出製程擔任品管職務,「當時已經在產線上,對於生產機台的產線流程相當熟悉」,她之後轉換跑道擔任行銷企劃、接著又擔任過AI產品經理,在時機成熟之後,劉雅雯決定創業,以製造業的AI影像辨識作為創業主軸。 「企業的困難在於缺乏AI開發團隊,即使有了AI團隊,開發專案要花很多時間,至少6-12個月」深諳市場痛點的劉雅雯表示,平台要解決的問題是提供傳統製造業不需要程式開發背景的員工,也可以自行打造AI模型的平台,從遠端協助產線的故障排除及後續的系統維護作業,來幫助企業節省開發時間及人力成本。 BailAI影像檢測平台使用場景 面對市場上提供AI影像辨識的競爭對手非常多,慧演智能的技術優勢何在劉雅雯表示,現階段許多企業備有AOI光學檢測設備,但AOI光學檢測在應用上的瓶頸是,只能用於產線速度快、數量多的瑕疵檢測,而每回檢測或生產都要重新調整參數。而根據她對產業的了解,受限於AOI設備動輒上百萬元台幣起跳,大部分中小型傳統製造業,並不具備雄厚的財力,但他們又想要做自動化檢測,這就是慧演智能的機會。 劉雅雯接著表示,傳統製造業不可能養一個包括AI工程師、資料工程師、雲端架構師、終端架構工程師等專業人才的技術團隊,而慧演智能擅長於軟硬體整合,企業透過BailAI影像檢測平台,就能輕鬆解決產線上的檢測問題。換言之,客戶只需提供影像或樣品,交由慧演智能訓練模型、部署模型及系統整合,即可輕鬆使用AI技術進行產線流程優化及監測。 參加AI新銳選拔賽 組裝行為影像辨識辨識率達9成以上 舉例而言,某家連接器廠商,技術團隊只有1-2位AI工程師。主要解決的問題是,大部分作業員都在產線上,而品管及高階主管在遠端,公司欲透過遠端監控方式掌握產線實際情況。慧演智能透過工業相機拍攝產線畫面,並將AI影像分析傳送到遠端,主管及品管人員可以透過螢幕來觀察產線組裝有無錯誤,如連接器頭跟線路有沒有接好等問題。 慧演智能的AI影像檢測架在微軟的Azure雲端平台上進行作業,也會透過終端設備,如NVIDIA的邊緣運算設備放置於檢測站周邊,透過雲端到終端的整合解決方案,協助傳統製造業提升產線效能與及早發現問題。現階段慧演智能的客群包括航空、電子周邊、連接器及金屬等相關產業。 組裝產線人體行為辨識組裝流程解決方案,準確率達9成以上 為了實證技術深度,慧演智能參加經濟部工業局2021年AI新銳選拔賽活動,為光寶科技提供「組裝產線人體行為辨識組裝流程」解決方案,透過相機及AI影像辨識的方式辨識產線作業員的有效工時及無效工時,也就是透過影像辨識手的姿勢及位置,來判斷作業員的組裝行為,其精準率可達9成以上。 劉雅雯補充說明,由於電子零組件組裝工序較複雜,多以人力為主,無法以機械手臂取代,因此慧演智能在光寶的組裝站裡,用鏡頭拍下作業員組裝的流程,再針對影片進行演算法的訓練、校正,最終訓練出的模型能直接判斷組裝過程是否出現任何錯誤,以改善整體流程。 導入BailAI影像檢測平台 專案開發時間可望縮短至1個月 成立三年多以來,慧演智能累積不少專案經驗,希望能將專案經驗產品化,劉雅雯指出,將於今2022年完成BailAI影像檢測試用版,客戶可依檢測物件的精細度選擇工業相機、視訊相機,甚至於X光來擷取影像,再透過平台做影像自動標記,慧演智能會提供符合場域的AI應用模型,供客戶使用,也可以在雲端終端做推論,便於製造業上線使用。包括金屬產業、工業電腦的金屬機殼、連接器、電子周邊,機械零件,皆可利用平台進行瑕疵檢測及物件辨識。 現階段慧演智能將持續提升技術能力,累積客戶的經驗完成產品化,同時加速AI檢測落地應用,中期將建置終端雲端基礎設施,將企業AI專案開發時間從6-12個月縮短至1個月,降低企業使用時間及使用門檻。長期目標將鎖定台商聚集較多的東南亞市場,將軟硬整合AI解決方案拓展到海外市場,擴大營運規模。