:::

【109年 應用案例】 企業專利監控之AI數據分析平台,一鍵搞定專利分析與發展趨勢!

如何有效率地分析海量增長的專利資訊,挖掘潛在價值?

專利是技術、市場和競爭資訊的寶貴來源。然而,公開的專利文獻總數已高達1.2億件,僅去年一年就新增630萬件。如何才能讓這些海量專利文獻為己所用?

專利分析為充分挖掘專利資訊的價值,提供了一條不可或缺且切實可行的途徑。通過專利分析,可以瞭解自身與競爭對手各自專利組合的優勢、不足和機會,以及全球專利申請趨勢、技術全景及可能存在的空白領域等。

然而專利分析要求透徹理解底層資料,包含:資料的用法和用途,以及能夠解決的問題等,如何才能有效運用及分析海量資訊,正是最讓人頭痛的問題……

非結構化的資料型態,只能透過人工閱讀整理,十足惱人!

「專利說明書」是融合法律與科技用語且具有法律效力的文件,屬於非結構化的資料,過去各項檢索分析都是以人工閱讀內文與整理,實乃曠日廢時,且經常發生追趕不上訴訟時程的情況。在協助企業進行專利佈局時,常面臨無法量化競爭對手與客戶之訴訟風險程度,也難以量化專利之品質與價值,造成國內某企業智權管理公司之業務範圍無法進一步地擴大,也無法促進外界對專利加值應用的瞭解程度。

近年來,企業智權管理公司也開始協助企業中的研發人員,提前掌握影響產業未來發展的重要科技及其專利競爭情報,能使相關人員更從容地進行專利佈局,並提高專利品質與價值。然而,大部份業務範圍在代理專利軟體,如:知識產權運營管理資訊系統 (IPServ),主要是協助企業或個人進行智慧財產權管理,但目前並無為企業或個人提供「專利監控」類數據分析的服務。

知識產權運營管理資訊系統(IPServ)

▲知識產權運營管理資訊系統(IPServ)

這些專利軟體包含專利檢索、管理與維護等,而專利大數據是否能夠成功輔助企業掌握市場現況、專利價值、訴訟威脅及監控競爭對手的不法侵權行為,全是仰賴專利數據之取得。但專利數據之清理非常費時,所以一直是個讓人頭痛不已的問題,直到台灣資料科學股份有限公司研發出「企業專利監控之AI數據分析平台」,才終於出現曙光……

傳統專利分析曠日廢時,改用「企業專利監控之AI數據分析平台」, 一鍵搞定!

「企業專利監控之AI數據分析平台」的發想,是使用專利申請的案件中之「專利編碼」與「公司產業別」等具鑑別力的影響因子,透過大數據分析,並增加相關新聞資料,再以機器學習方式透過AI輔助專家,分析市場現況、避免訴訟威脅以及監控競爭對手的不法侵權行為。

這些最後萃取出來的因子也將影響個股的表現,對此可以根據不同的企業屬性和發展方向,朝向「客製化大數據分析」提升企業的戰略位置。希望透過平台的搜尋可以快速讓企業於新增產品線時,了解競爭對手的專利佈局,避免侵權的情況發生;或廠商要找合作夥伴時,也可以從有高度研發的公司來篩選,將此平台作為競合關係的好工具。

系統操作流程圖

▲系統操作流程圖

傳統上專利分析曠日廢時,需透過人工檢索專利、閱讀專利資料,才能產出一份專利分析報告,現在只要藉由「企業專利監控之數據分析平台」,使用者可輸入某年度或自己與競爭對手的公司名稱,經過系統分析後,即可快速得知該年度及公司間的技術布局、變化趨勢監控等結果,節省作業時間及人力。

例如,若要知道市場上對於物理、化學、電學的相關技術發展現況,可分析IPC專利號碼,檢視哪些公司的持有專利有群聚現象,藉此研判該群聚專利為相關技術或相互依賴的技術,了解公司之間在專利布局上的相似度、產業趨勢,縮短決策時間,搶先布局或做專利迴避設計。

透過人工智慧改善傳統的人工專利檢索的作業以提高工作效能,「專利監控平台」幫助專利分析人員更方便了解特定技術領域的專利發展現況,以預測未來技術研發方向。而「專利布局」是企業針對專利組合,透過整合市場、產業、法律等因素,構建嚴密的保護網,形成有利的研發方向、降低侵權風險。

嚴謹的專利布局可幫助公司在戰略規劃時避開地雷區,避免不必要的訴訟戰;或可透過搶先申請專利及購買專利,擴大自身技術的保護範圍,而要達成此目的,關鍵是經由分析大量的專利資料,領先同業找出趨勢。以本公司開發之產品線人流資訊流天線為例,專利監控平台可針對產品之專利組合,達到上述目標。

人流資訊流天線產品圖

▲人流資訊流天線產品圖

未來,將針對專利文件內容之標題與摘要進行文字探勘(Text Mining)。前期人工輔助,後期採機器學習方式,建立「專利詞庫自動斷詞系統」。應用此斷詞系統將標題與摘要進行斷詞,計算字詞頻率(TF)與反轉文件頻率(IDF)。透過統計方法(如相關相數),擷取專利文件特徵,找出專利之間強關聯性之相關字詞。提升探勘專利之相似度,更進一步了解專利訴訟之風險。

協同專利業者,打造更便利的「企業專利監控AI數據分析平台」!

經由「企業專利監控之AI數據分析平台」的「平台網絡圖」查詢,可讓公司或事務所快速看到其相關的產業公司佈局在哪些專利上。對於「專利」而言,各公司可以思索應全由自家研發申請,或直接從產業龍頭單獨購買專利授權。對於「公司產品」而言,要商品化時可因應時代變遷採取不同的策略,前幾年也許是敵對的,隨著產品發展的差異而是今日的盟友。

專利監控平台顯示2009年度大立光電與其相關產業之網絡圖

▲專利監控平台顯示2009年度大立光電與其相關產業之網絡圖

而在「公司交叉比對」功能查詢中,可一次選擇多年,對於和主要公司相似度較高的對比公司,從年度變化可了解雙方是否發展太過相似的專利,而使二者處於高風險侵權的風暴範圍之中。當數據庫資料更多時,還可以進一步計算「專利風險率」,讓習慣讀數字或圖表的使用者能從另一角度快速知彼知己。甚至未來增添更多參數後,可以估計「侵權金額」,但取得參數內容,還需與專利業者協同合作,一同打造更便利的專利風險監控平台。

台積電與華亞科技、力晶科技之間相似度指標的走趨圖

▲台積電與華亞科技、力晶科技之間相似度指標的走趨圖

推薦案例

【解決方案】連聯合國都買單 悠由數據應用運用農業數據搶攻全球商機
連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝

這是一張圖片。 This is a picture.
AI輔助紅十字會 急難救助更智慧

多一點準備 少一點損失 社團法人台灣食物銀行聯合會,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 當台灣發生天然災害時,如地震、山崩、土石流、颱風、水災、旱災等,食物銀行的各項物資,也可即刻投入救災。本次場域驗證單位社團法人南投縣紅十字會食物銀行據點之一,以下簡稱南投紅十字會承擔「備災」物資預前準備、「救災」物資分配等工作,協助政府擔負起災變的救助與賑濟的責任。 在臺灣各項天災均具有發生時間長短和空間覆蓋廣闊或狹隘的特性,加上極端氣候常態化,災害規模與數量逐漸增加,也更難預測。而不同災情所需的物資數量和種類皆有不同,且須應對不同災區人民生活、救援需要、交通狀況、地形限制等各項因素,進行多樣化的物資調配,亦面臨諸多挑戰。 卡努颱風重創南投山區交通 法治國小親愛村奧萬大進行物資遞送" src"httpsaihuborgtwimages35f4ec12f8201e1d7cb12e2f22a64c89jpeg" alt"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" aria-label"南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送" data-image-id"748" 南投縣紅十字會規劃山區路線 埔里法治國小親愛村奧萬大進行物資遞送 災難不斷反覆發生,我們需要時刻做好準備,有效「備災」可減緩災害所造成的衝擊,除了快速應對災區物資需求、賑濟物資,甚至可起到心理支持作用,使災區人民多一層生命財產的保障。 救災資訊缺乏即時性 社團法人台灣食物銀行聯合會為改善偏鄉生活及物資缺乏問題,除了與南投紅十字會合作,並陸續於南投市、埔里、仁愛力行、瑞岩、信義望美、同富、水里、鹿谷及草屯等共9站設立食物銀行據點,每月載運每戶等值新台幣6001000元之物資供應。但在天然災害發生時,仍有許多問題需要克服。 例如當颱風、地震、山崩等天災發生時,救災調度系統的資訊來源依賴於災害發生後的回報,從回報到應變再到執行過程中的時間差,無法及時以災區需求進行「救災」物資調整和分配,資訊缺乏即時性時,就會影響救援效率。 南投紅十字會的「備災」物資如乾糧、水、泡麵等存量、有效期限、發給都是以人力來紀錄,當災害發生時,可能面臨「備災」物資已過期,無法成為「救災」物資。 也有可能前述兩種狀況同時發生 造成花費更多時間把「備災」物資重新調配成可用「救災」物資。另一方面,民眾接到災區缺乏物資的訊息後,熱心捐贈的物資,時常與災區實際需求的物資品項差異甚大,容易造成物資過剩問題。 天災發生前後之物資作業流程 AI預判天災 補強備災物資調度正確性 應用 API 技術介接運算氣候狀態、災況搶救強度,並將南投紅十字會主要工作與搜救之需求地區為優先導入,並搭配南投紅十字會既有豪雨、颱風等模擬救災訓練,建立「天然災害緊急救備物資調度及補充決策系統」以下稱急救備物資系統。 在物資管理上,將物資庫存資料與即時供給的資料輸入急救備物資系統,進行比對分析後,協助南投紅十字會快速辨認物資,如餅乾乾糧、飲品、冷凍食品、衛生紙等,並判斷物資應成為「備災」物資或定期發放的物資。再加上資訊預判,了解偏鄉地區後續可能的災情狀況,進行食物遞送,同時解決前端食物浪費並解決後端實務需求。當天災發生時,可更快速進行應變與決策,完成物資部屬,使物資作業轉換速度增加20。 AI急救備物資系統 幫助物資調配快速應變 透過南投紅十字會的場域驗證將AI系統、物資管理、相關應用推廣至更多不同地區的急救難團體,同時持續改進急救備物資系統中的預警功能,加強預警技術基礎、提高預測精度系統即時性、優化數據收集和分析過程。 同時可與政府機構、氣象部門或其他救援團隊合作,研討整合更多數據源後,建立共享資源和數據的機制,及時共享信息,幫助更多急救難團體提高災難應變的能力,掌握黃金救援時間。

這是一張圖片。 This is a picture.
測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。