:::

【108年 應用案例】 公廁如何靠IoT及雲端科技變乾淨、解決7成客訴,並且提昇120倍效率?

IOT智慧廁間:一個乾淨、省電、便利的新智慧廁所革命

使用六種感知器偵測衛生紙、洗手乳存量、漏水、臭味發生以及人流和廁間使用狀況偵測,搭配上NBIoT傳輸、雲端系統以及 LINE 機器人。可以大幅改善客訴、提高廁所消耗品的補給效率,加上即時的狀況通知,可以禁絕違法廁間抽煙以及提昇安全性。使用者再也不會遇到廁所濕、髒、臭,以及沒有衛生紙的窘境,體驗大升級。

走進熱門觀光區的公廁,給您什麼樣的印象?沒有洗手乳?沒有衛生紙?甚至是又髒又臭還漏水?資策會的 IoT 大數據智慧廁間解決方案,一次解決廁所不方便的問題。

根據行政院環保署的統計,截至2019年9月底為止,全台灣目前已經建檔管理的公廁數量達 4 萬 3 千餘座,而整個環保署卻只有 3 萬 4 千餘人。這麼龐大場域數量的清潔管理,顯然不是一件容易的工作;再加上高齡化社會來臨的必然,從事第一線廁間清潔服務的人員數量和品質勢必遇見前所未有的瓶頸。引入有效的服務流程以及科技的輔助,成為一個遲早要面臨的重大課題。

資策會在全台 20餘間 IoT 智慧廁間服務解決方案的實證案例,或許為我們解決這道難題帶來一個不錯的方向。

應接不暇的客訴、四大問題、以及資策會的三套解方

2016年,當與火車站共構的捷運松山站正式啟用後,原本使用量已經幾乎爆滿的公共廁所,面臨到爆量使用所造成的嚴重客訴。原本平均每日旅客量只有四萬人次的臺鐵松山站,就已經瀕臨服務產能的瓶頸;在連接的捷運松山站開通之後,旅客爆增為七萬人次,讓原本就已經接近極限的服務能量,完全無法應付捷運開通後新增的旅客量。

曹雪芹在小說巨著「紅樓夢」當中曾出過一個刻劃人心的經典台詞:「牆倒眾人推」,或許可以形容這個現象:各個獨立廁間的衛生紙、洗手乳總是來不及補充、洗手台骯髒以及廁間排泄物的污染來不及清理,使得廁間的客訴連連,應接不暇。再加上臺鐵松山站的公廁比捷運松山站的公廁更為靠近旅客必經要道。臺鐵松山站至此,必須站出來、面對並解決這個難題。

由於臺鐵松山站與資策會有著長期的合作關係,就委託資策會協助解決這個頭痛難解的問題。

愛迪生有句名言:「只有在我知道一切做不好的方法以後,才知道做好一件工作的方法是什麼。」而資策會第一個要做的就是痛點分析(Pain Point Analysis),從根本面來思考問題。經過盤點客訴以及與第一線的清潔服務公司探討分析之後,發現四個問題、和三個解方:

四個問題分別是:衛生紙以及洗手乳補充不即時,洗手台潮濕以及空間內的惡臭。

而三個解方分別來對應這四個問題,分別是:1. 消耗品如衛生紙、洗手乳的精細管理。2. 服務流程中的關鍵績效指標 ( KPI )數位化,如洗手台的潮濕程度,或是空間中的臭味濃度。3. 利用物聯網( IoT )的新科技達成前面兩個解方的實作,輔佐大數據和雲端科技來達成高效益的場域清潔管理。

「技術特點以及研發過程」

六個關鍵感知器,以及 IoT 雲端主板與大數據的結合,徹底解決七成的客訴,效率也提昇了120倍

一、消耗品的精細管理

為了達成衛生紙和洗手乳的精細管理,第一步就是針對這兩個耗材研發感知器來偵測。

從 2017 年開始,資策會開始設計首款的紅外線廁紙偵測模組。該模組主要運用衛生紙使用習慣的物理特性來偵測:一般正常使用下,廁紙放在鐵桶型的支架上,它的厚度會隨著消耗而慢慢的變薄。

這個模組需要利用 PSD 位置感應探測器 (position sensitive detector) 、 IRED 紅外線發光二極體 (infrared emitting diode) 以及 SPC 信號處理電路 (Signal processing circuit) 三者的搭配,來達成有效的廁紙長度判斷,其精確度甚至達到小數點後一位。

第一次開發這個偵測模組的時候,由於沒有可以參考的設計,只好從感知器的選擇、電路板的設計規劃、感知器程式的撰寫,甚至光固化 3D 列印的外殼設計完全不假他手,全部都在資策會內完成。

廁所場域偵測器展示圖

▲智慧廁間服務實境

不過,雖然設計生產廁紙感知器的種種困難都克服了,但是萬萬沒有想到,如何固定反而是讓人吃盡苦頭的一道難題。

廁所感測器展示機圖片

▲智慧廁間廁紙偵測模組

資策會團隊與我們分享:「一開始的時候,我們用熱溶膠固定,可是清潔人員每次補充廁紙的時候都需要開開關關。震動一多,沒有很牢固的固定住,結果就是掉下來。

最糟糕的狀況是在女廁:有一次有女性旅客如廁的時候,這個感知器沒固定好就掉下來了。你會不會覺得這個感知器看起來很像針孔攝影機?這東西突然在女廁掉下來,有沒有很糟糕?(笑)

還好長官支持,我們也持續研發如何固定的技術,直到最後可以成功的牢牢固定,不然這個專案早就胎死腹中了。」

感測器與 line 連動示意圖

▲智慧廁間服務手機畫面展示

後來,廁紙偵測模組上線之後,原本清潔人員巡察一次廁紙使用量就要花掉 15- 20 分鐘,後來只需打開 APP,10秒就能查完廁紙使用量。大幅提高了效率至原本的 120 倍。

既然衛生紙的消耗量解決了,下一個難題就是洗手乳的低存量偵測了。

跟衛生紙不同,洗手乳每一次補充的量不見得完全相同。由於設計的理念是希望能夠用最低價、最穩定的元件來完成這個功能,以便於未來的推廣。最後選擇了常見的霍爾感應器,將其貼在洗手乳給皂器的外殼上,來達成偵測洗手乳即將見底的功能。

原理其實很單純,只要液面低於某個百分比,霍爾感應器就可以對液面進行電磁感應而產生電壓的變化,感知器送訊號至後端的雲端伺服器,然後跟廁紙感知器一樣,由伺服器再發送訊息給清潔人員。

二、服務流程中的關鍵績效指標 ( KPI )數位化

洗手台潮濕往往就會滲水到地板上,再加上來往旅客腳上難免帶有灰塵,一旦踩過潮濕的地板,就會使得地板髒污。視覺上就會給人「這廁所很髒」的感受。然而,廁所不可能隨時都有清潔人員值守,這時就需要有專門的感知器來偵測這樣的情況。

資策會利用薄膜導電電阻的特性,當薄膜電阻表面具有液體時就會降低整體電阻值,進而改變類比訊號輸出的相關數值。如此一來,只要在容易潮濕的表面鋪設薄膜電阻即可偵測潮濕的情況。例如窗台旁邊,或是洗手台面。

不過,由於感知器較為昂貴,而且刮傷就會破壞感知器的效能,所以後來只有特定的公廁才有導入這個潮濕偵測的感知器。

另外,除了視覺上的髒污,若是公廁傳出陣陣惡臭,即便這個廁所看來明亮乾淨,仍然會被認為是髒污的廁所。

然而,臭味的偵測可沒有那麼容易解決。

一開始,為了找到這個「電子鼻」,找遍了國內外的各種感知器,結果才從日本某個專門生產各種氣體感知器的大廠產品線中找到合適的 MEMS 微機電感應晶片。

所內接著也是從這個晶片的麵包板測試、電路設計圖、以及發包出去生產,共花了近半年才完成這個感知器的設計。

除此之外,在研發智慧廁間的過程當中,陸續也接到其他的需求,如人流偵測以及使用偵測等模組的研發委託。

感測器配置於洗手台下方呈現

▲智慧廁間感測器呈現

在開發過程當中發現,部份的無障礙廁間可能在使用過後,使用者有可能不小心把門關上,燈也忘記關,所以看起來這間廁所一整天都有人佔用。然而,真正需要使用的人反而被空蕩蕩的無障礙廁所擋在門外。這個問題相對簡單,工程師找到現成的人流感應模組,將其安裝在洗手台之下,這個問題也就迎刃而解。

另外,部份偏遠的公廁如梨山國家公園這一類公廁,對於環保減碳的要求上實在難以執行。由於地處偏遠,負責人員每天上班要去開燈,下班再去關燈。有些時候一整天卻沒有幾個遊客使用公廁,但所有的燈光以及設備都還是整天開啟,實在非常浪費電。

而一般市售的感應器非常呆板,只要30秒到10分鐘設定的時間一到,就關掉電源。或許在家中只有一個人使用廁所的情況,這樣的感知器已經堪用,但是動輒60坪的廁所,需要好幾個偵測器一起工作才能確保是否還有使用者在廁間當中,又是一個市面無售的解決方案。資策會只好整合多個感知器,另外在 MCU 上開發演算法,才解決這個需求。

三、IoT、雲端、大數據、以及 5G NBIoT 新科技的引入

創新的路上,總是有總總的困難等著工程人員來克服。而見招拆招的過程當中,也一步步的精鍊了解決方案,使它更便宜、更可靠、更便利。

在前述的各種感知器建置完成之後,這套系統也陸陸續續產生新的問題留給資策會來解決。例如使用者習慣的障礙、耗電問題、成本問題等等。

由 APP 改為更為貼近使用者習慣的 LINE 群組機器人

透過電信商、技術商、服務商擴散至場域的 Line 服務擴散系統圖

▲智慧廁間服務架構呈現

2017年首次完成松山車站約 60 坪的公廁佈建之時,是採用 MCU 搭配 WIFI 的通訊方式全天候監測並傳輸資料到伺服器上,在系統判斷異常之後,利用資策會寫的手機 App 通知清潔人員。

這個設計乍看之下似乎牢不可破,然而,由於現場清潔人員平均年齡 50 歲以上,安裝一個專門的 APP 反而沒人使用,第一線人員經常用沒幾天就把程式刪除。空有整套感知器在監控,卻沒有清潔人員真的使用。使用者習慣,往往是新科技導入面臨的最大障礙。

後來,做了一些使用者訪談後發現,每個公廁的清潔人員,都有一個 LINE 群組。

廁所設備 LINE 群組溝通使用圖

▲智慧廁間服務 Line 群組展示

資策會團隊提到:「既然知道他們(清潔人員)有 LINE 群組,那就好辦了!

我們一開始小心翼翼的詢問清潔人員,是不是可以邀請一個機器人”新同事”來幫忙巡察衛生紙以及判斷廁所的異常。

一開始的時候,清潔阿姨們還有點疑慮。後來發現這個機器人”新同事”很好用之後,反而很愛它。」

因為成本、環保、以及便利性問題,由 WIFI 升級成 NBIoT 通訊協定

WIFI的速度快,頻寬大。但是一個公廁裡有男廁和女廁,就要分開兩個系統來分別監控,而且每個系統都需要獨立的 4G 網路連上雲端系統。所以建置以及通訊成本較為高昂,而且耗電也比較大。

說到這裡,或許讀者會有疑問:公廁都是設置在公共空間當中,難道沒有公共 WIFI 網路可用?

資策會團隊給了我們很有深度的答案:「其實,確實幾乎每個公共空間都有 WIFI 網路可以使用,但是,與其他人共用 WIFI 容易受到干擾,而且 IoT 設備簡單,缺乏安全性控管的機制,若使用公開 WIFI ,有一定的安全風險。

因此,我們的解決方案中,還是設計封閉的WIFI通訊系統來解決通訊問題。

另外,由於一個 WIFI 基地台能夠支援的節點數量只有 20-30 個,一個有 18 個廁間的女廁就需要一組系統了。再加上隔了一個水泥牆,訊號會非常衰弱,甚至影響到訊號的穩定性。所以一個公廁設置兩套系統主要是穩定性考量而不是成本考量。」

人口密集的使用場域當中透過 WIFI 來傳輸資料到伺服器並不會太麻煩,然而,當智慧廁間系統開始被應用到更遙遠的廁間如梨山、谷關、獅頭山等國家公園遊客中心公廁,時時都要確保網路通暢,確實成為一道難題。

還好,5G 的新一代行動通訊網路當中有一個專門為了 IoT 物聯網設計的 NBIoT 窄頻物聯網通訊方式 (Narrow Band Internet of Things)。資策會領先全台,採用國內晶片大廠的 NBIoT 晶片組開發出台灣首套針對智慧廁間設計的 NBIoT MCU 控制系統 。

這套系統除了成本大幅下降、而且十分省電,只需要原本 WIFI 系統 ⅙ 的電量。最重要的是,比起傳統 WIFI 需要相對穩定的 4G 訊號橋接,這套系統的覆蓋範圍更廣,深山野嶺也都可以通訊。使得未來智慧廁間的覆蓋率,可以不受網路訊號的限制而更加廣泛。

四、「效應分析以及未來展望」

IoT 智慧廁間:一個乾淨、省電、便利的新智慧廁所革命!

隨著整套的各式感知器、雲端系統、NBIoT 以及 LINE 機器人陸續上線,帶來的好處十分顯著。

以松山車站公廁為例,從本來的應接不暇到後來大砍 70% 客訴量,巡察消耗品廁紙所需要的時間從原本的 15-20 分鐘縮短到只需要 10 秒。一旦有異常狀況發生,也從原本的不知不覺,到現今的立即通知。

有趣的是,意料之外的,這整套系統也順便也帶來了安全、以及徹底執行菸害防治法的附加好處。由於廁間只要有人佔用超過 40 分鐘,就會發出警告給清潔人員的群組。所以,一旦有使用者佔用太久,就會有清潔人員來敲門。安全性大幅提昇。

另外,臭味偵測器對於煙味也非常的敏感。由於國家公園全面禁煙,部份偏遠公廁常有旅客存著僥倖心態,溜進公廁偷抽煙。在國家公園的公廁中,臭味偵測器一旦偵測到煙味,就會播放一段菸害防治法的語音,讓旅客清楚知道公廁內抽煙可是要開罰新台幣二千至一萬元的。自從臭味偵測器安裝了之後,公廁使用者偷抽煙的情況很明顯的大幅減少。

後來,松山車站的「智慧公廁」因為克服了種種難題,而得到了交通部頒發的「金路獎」,因此而聲名大噪。從原本的客訴連連,變為各個公部門爭相參訪的模範公廁,讓承辦人多了許多帶團參訪的工作,也可以說是很奢侈的煩惱吧。

未來展望

這套系統因為 3 年的研發和場域實驗過程當中已經實證其穩定性和成本效應,目前已經成功技轉給國內的系統整合廠商。目前服創所也期待未來這套方案能夠擴展、甚至是技轉到歐美地區。

除此之外,在穩定可靠的數據流和通訊連線基礎之上,引入大數據來分析,或許可以讓人力的調配更加的精細,工作分配不均的問題可望得到根本的修正。

面對高齡化社會的來臨, NBIoT 通訊系統,搭配上各種 IoT 感知器,或許可以為我們帶來更健康、安全的生活環境。一些傳統上高度仰賴人力的重複性工作,也可以利用科技大幅提昇效率。

推薦案例

這是一張圖片。 This is a picture.
AI走入公益,食(實)物銀行也有時尚科技

社團法人台灣食物銀行聯合會以下簡稱本會以食物援助、貧困救濟、減少食物浪費、建構無飢網絡為組織宗旨,在台灣各地已有55個食物銀行據點,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 但各據點皆需大量人力與志工以傳統聯繫方式處理食物銀行日常事務,聯絡非營利組織與捐贈機構,為據點收到物資捐贈後,再分配給有需要的家庭戶或個人。在物資管理上缺乏數位化與整合資訊,可能產生物資資源分配不均問題。 倉儲轉運中心與迷你食物銀行 分配弱勢物資 本次場域驗證單位社團法人高雄市慈善團體聯合總會食物銀行據點之一,以下簡稱高慈總 於109年6月24日正式啟用台灣首座「食物銀行-倉儲轉運中心」佔地200坪,提高食物物資再分配、運用之效益、妥善存放及食物物資管理,至今已搶救近二百噸蔬果續食,服務一百多個團體、逾5萬戶弱勢家庭受惠,持續服務19家迷你食物銀行,將於高雄多個行政區陸續落成,分配食物物資給超過10萬人次弱勢家庭。 高慈總「食物銀行-倉儲轉運中心」於高雄大社區 照片來源 社團法人高雄市慈善團體聯合總會 人力與食物物資管理的挑戰 面對大量經濟弱勢家庭的需求,「食物銀行-倉儲轉運中心」的管理顯得格外重要。進貨時需進行分類整理、汰廢、入帳等繁瑣的工作,出貨時則需參照社工員的食物物資需求做配置建議。這些工作都需要依靠人工判斷及經驗累積。而參與的志工多為高齡人士,體力有限,而倉儲工作需耗費大量體力,志工的招募困難重重。倘若有大批食物物資進庫,在調配上會耗費空間與人力整理、盤點,並同時擔憂食物物資是否能有效的被運用及周轉。也顯示出食物銀行服務逐漸擴大規模,但人力與物資管理系統無法隨之配合。 同時食物銀行物資來自各界之捐贈,故類別多樣且效期、規格、數量也均不相同。迷你食物銀行的志工夥伴,多數也為高齡人士,但卻需執行個案服務、食物物資管理配置、物資資源開發等多重職責,有時也需向物資領用者說明並接受即期、大量特殊性的物資,如成人接受嬰兒奶粉。 「食物銀行-倉儲轉運中心」物資盤點需要皆仰賴人力 迷你食物銀行志工具多重職責 照片來源社團法人台灣食物銀行聯合會 報廢物資減少60 物資轉遞速度增加80 為精進物資管理並達到物資有效利用,並解決人力短缺等問題,在本次場域實證案導入「食物銀行倉儲物資募集AI自動預警需求判讀系統」,第一部分為建構分類模型之前置作業,建置以及蒐集場域倉儲資訊,進行AI建模訓練,將過往場域倉儲資訊收集建置成資料庫,使AI可進行預處理、分類等工作。同時視其物資種類之相依狀況作為特徵值,導入演算法中進行運算建模,再依收集之資料進行重新訓練,最終進行場域驗證並針對經常性五大類物資進行數據整理,以建立數據資料所需之訓練及測試資料集,第二部分以演算法之RNN技術建構分類模型;進一步利用強化學習建構食物銀行倉儲管理機制,使分類完善之受贈物資如白米、沖泡飲品、麵條、泡麵、罐頭等可以根據儲位指派原則自動指派儲位。 AI服務系統服務流程與說明 資料來源社團法人台灣食物銀行聯合會 在AI預判下,可優化物資轉遞速度及物資調配,有效精準配對物資捐贈並降低捐贈歷程的損耗,增加物資分配正確性,提高媒合服務率即捐贈成功率,降低錯誤物資造成人力物力浪費,即時監控食物物資的庫存,確保操作者能夠迅速回應需求,有效提供物資援助。 以AI系統的導入,加上數據智慧化建置,協助倉儲轉運中心的運作,可爭取更多時間分配捐贈物資使用。導入加速社福團體數位化服務推展,完善照顧整體社會弱勢群組之需求。 使用系統進行物資分配調度 照片來源 社團法人高雄市慈善團體聯合總會 透過本次的場域驗證後,未來可推廣至食物銀行其他服務據點導入AI系統,也可與更多非營利組織、公益團體、慈善團體等夥伴合作,擴大「食物銀行倉儲物資募集AI自動預警需求判讀系統」應用範圍如醫療用品配送,幫助更多組織更智慧化地管理和分發,減少物資的浪費,以提高社會福祉。

【導入案例】赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20
赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95。 VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及ARVR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。 VCSEL技術應用層面廣,也可應用於無人機。圖為佐翼科技農用無人機 VCSEL技術應用層面廣 AI技術助攻瑕疵檢測 赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。 赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10,造成生產成本增加。 為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。 因此,赫銳特科技首先建立自動光學檢測裝置Automated Optical Inspection,AOI,自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像Test與一標準正常影像Normal,進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network ResNet或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。 導入AOI檢測 提升產能效率達20以上 比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試高溫回焊,失效樣品進再入重工流程。 但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95以上,預期可協助場域業者降低生產成本達10,提高產能效率達20以上。 導入AI影像檢測的前後之差異 赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。 而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

【導入案例】維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測
維繫遊艇王國美譽 嘉信遊艇導入國內第一套FRP複材超音波智慧檢測

位在高雄的嘉信遊艇,成立逾40年,是台灣最大客製化遊艇業者,客戶遍佈美、歐、亞、澳各洲,為臺灣贏得「亞洲遊艇王國」的美譽。為了解決目前FRP船體檢測仍仰賴傳統方法如人眼辨識、敲打辯聲,耗時費工問題,嘉信遊艇首度將PAUT 陣列式超音波檢測運用於船體FRP複材上,並結合AI判讀超音波影像,發展完整智慧化解決方案,創造檢測業新興市場。 嘉信遊艇前身是嘉信木業有限公司,剛成立時是間位於高雄市臨海工業園區專營木材進口的工廠,1977 年開始進行遊艇設計、製造與銷售。企業第二代接班人,即嘉信遊艇總經理龔俊豪進入公司後,打破過往仰賴老師傅功力為主的製造模式,引進數位化製作,加快造船速度,船也愈做愈大,多年排行世界24公尺以上大型遊艇前20大製造商。並創下在一年內交付94艘遊艇的紀錄,為臺灣贏得「亞洲遊艇王國」之美譽。 瑕疵檢測確保遊艇品質 以AI取代人力效益高 為確保遊艇品質,瑕疵檢測相當重要。目前遊艇業採取的瑕疵檢測方式仍十分傳統,通常以手積層或是真空灌注製程方式製造船殼結構,藉由人眼或是敲擊法依敲打聲音頻率來判別瑕疵,需要人工耗費時間檢查,如有瑕疵須重工修補,接續執行噴佈膠殼作業。為便於檢測,船體必須分段施工,以24公尺以上大型遊艇而言,分段施工非常耗時耗力。 為縮短遊艇製程之速度,嘉信遊艇會先將船殼進行膠殼流程,之後再執行手積層製程,船殼製程有兩種複合材料試片結構,以遊艇54呎船殼來看,船殼中內含膠殼、芯材、纖維、樹脂,總厚度約為32公分plusmn01cm,與未含有芯材的FRP船殼總厚度約16cmplusmn01cm相差一倍之多。製程中偶會有玻璃纖維含浸不完全,或是玻璃纖維與樹脂間殘留氣泡等瑕疵問題發生,瑕疵的種類則包含樹脂不足、空洞、層離等,一出現瑕疵情況,船殼材料就供應不上,拖延遊艇交貨時間。 玻璃纖維船殼瑕疵種類示意圖。 為解決此一問題,嘉信遊艇與金屬材料產業以及AI科技產業三方專業技術的相互合作,結合金屬材料產業的超音波檢測專業技術與AI科技產業近年發展的AI技術協助解決嘉信遊艇瑕疵判別的問題。作法是運用相位陣列式超音波檢測技術至遊艇複合材料結構,進行FRP超音波試掃評估,瞭解遊艇船殼積層層數厚度與材料特性,依據超音波專業經歷,評估船殼結構適用的超音波探頭頻率等資訊,經測試以頻率5MHz且探頭寬度為45mm的探頭設備,能成功找出模擬瑕疵試片中的瑕疵位置及大小。 三方合作從陣列超音波評估、AI技術模型開發及實船實證應用,獲得瑕疵檢測解決方案。 檢測影像為超音波信號影像,影像依據超音波回饋訊號呈現不同色彩,透過YOLO演算法,建構自動識別瑕疵的部位的AI模型。若異常資料蒐集程度不足以訓練,則預計採用 CNN-based Autoencoder 演算法,蒐集正常影像資料進行訓練,建構異常檢測的AI模型。物件偵測YOLO模型的訓練將輸入具有瑕疵標註的影像資料,異常檢測模型則是輸入沒有瑕疵的影像資料進行訓練。 模擬缺陷試片對應相位陣列超音波信號結果 AI系統瑕疵檢測 可縮短15個月工期 加快50判讀速度 此套AI系統建構完成後,運用至嘉信遊艇實船54呎遊艇進行驗證,可有效解決嘉信遊艇瑕疵之問題,並可望藉由 AI 技術導入超音波檢測進行智慧化判讀,約可加快50之判讀速度,同時縮短15個月的工期,有效提升遊艇製程時程與品質的效益。 當臺灣遊艇發展朝向大型化、精緻化型態之際,帶來產業優化與轉型的機會,以及發展關鍵技術的契機。複合材料超音波人工智慧檢測方案之應用為遊艇業界首創,預計可吸引更多有檢測需求之遊艇廠商。 複合材料超音波人工智慧檢測方案有三大競爭優勢: 1 專業檢測經驗及數位化資料庫,便利製程管理與分析。 2 人工智慧AI自動判讀與辨識,快速辨識瑕疵,即時回饋給製程工程師。 3 高效率製程流程檢測,提供瑕疵修復建議,降低損壞率,強化複合材料強度品質。 導入人工智慧技術應用後,可優化遊艇製程流程,減少人力檢查樹速度,達到臺灣遊艇應用人工智慧之加值效應,擴大國際訂單量,讓臺灣遊艇持續在國際間享有盛名。再者,此一商業模式也擴散至複合材料相關之應用領域,增加跨領域市場使用率,預估將貢獻全台灣設備維修及非破壞檢測市場約新台幣14至20億元的經濟效益。