:::

【108年 應用案例】 公廁如何靠IoT及雲端科技變乾淨、解決7成客訴,並且提昇120倍效率?

IOT智慧廁間:一個乾淨、省電、便利的新智慧廁所革命

使用六種感知器偵測衛生紙、洗手乳存量、漏水、臭味發生以及人流和廁間使用狀況偵測,搭配上NBIoT傳輸、雲端系統以及 LINE 機器人。可以大幅改善客訴、提高廁所消耗品的補給效率,加上即時的狀況通知,可以禁絕違法廁間抽煙以及提昇安全性。使用者再也不會遇到廁所濕、髒、臭,以及沒有衛生紙的窘境,體驗大升級。

走進熱門觀光區的公廁,給您什麼樣的印象?沒有洗手乳?沒有衛生紙?甚至是又髒又臭還漏水?資策會的 IoT 大數據智慧廁間解決方案,一次解決廁所不方便的問題。

根據行政院環保署的統計,截至2019年9月底為止,全台灣目前已經建檔管理的公廁數量達 4 萬 3 千餘座,而整個環保署卻只有 3 萬 4 千餘人。這麼龐大場域數量的清潔管理,顯然不是一件容易的工作;再加上高齡化社會來臨的必然,從事第一線廁間清潔服務的人員數量和品質勢必遇見前所未有的瓶頸。引入有效的服務流程以及科技的輔助,成為一個遲早要面臨的重大課題。

資策會在全台 20餘間 IoT 智慧廁間服務解決方案的實證案例,或許為我們解決這道難題帶來一個不錯的方向。

應接不暇的客訴、四大問題、以及資策會的三套解方

2016年,當與火車站共構的捷運松山站正式啟用後,原本使用量已經幾乎爆滿的公共廁所,面臨到爆量使用所造成的嚴重客訴。原本平均每日旅客量只有四萬人次的臺鐵松山站,就已經瀕臨服務產能的瓶頸;在連接的捷運松山站開通之後,旅客爆增為七萬人次,讓原本就已經接近極限的服務能量,完全無法應付捷運開通後新增的旅客量。

曹雪芹在小說巨著「紅樓夢」當中曾出過一個刻劃人心的經典台詞:「牆倒眾人推」,或許可以形容這個現象:各個獨立廁間的衛生紙、洗手乳總是來不及補充、洗手台骯髒以及廁間排泄物的污染來不及清理,使得廁間的客訴連連,應接不暇。再加上臺鐵松山站的公廁比捷運松山站的公廁更為靠近旅客必經要道。臺鐵松山站至此,必須站出來、面對並解決這個難題。

由於臺鐵松山站與資策會有著長期的合作關係,就委託資策會協助解決這個頭痛難解的問題。

愛迪生有句名言:「只有在我知道一切做不好的方法以後,才知道做好一件工作的方法是什麼。」而資策會第一個要做的就是痛點分析(Pain Point Analysis),從根本面來思考問題。經過盤點客訴以及與第一線的清潔服務公司探討分析之後,發現四個問題、和三個解方:

四個問題分別是:衛生紙以及洗手乳補充不即時,洗手台潮濕以及空間內的惡臭。

而三個解方分別來對應這四個問題,分別是:1. 消耗品如衛生紙、洗手乳的精細管理。2. 服務流程中的關鍵績效指標 ( KPI )數位化,如洗手台的潮濕程度,或是空間中的臭味濃度。3. 利用物聯網( IoT )的新科技達成前面兩個解方的實作,輔佐大數據和雲端科技來達成高效益的場域清潔管理。

「技術特點以及研發過程」

六個關鍵感知器,以及 IoT 雲端主板與大數據的結合,徹底解決七成的客訴,效率也提昇了120倍

一、消耗品的精細管理

為了達成衛生紙和洗手乳的精細管理,第一步就是針對這兩個耗材研發感知器來偵測。

從 2017 年開始,資策會開始設計首款的紅外線廁紙偵測模組。該模組主要運用衛生紙使用習慣的物理特性來偵測:一般正常使用下,廁紙放在鐵桶型的支架上,它的厚度會隨著消耗而慢慢的變薄。

這個模組需要利用 PSD 位置感應探測器 (position sensitive detector) 、 IRED 紅外線發光二極體 (infrared emitting diode) 以及 SPC 信號處理電路 (Signal processing circuit) 三者的搭配,來達成有效的廁紙長度判斷,其精確度甚至達到小數點後一位。

第一次開發這個偵測模組的時候,由於沒有可以參考的設計,只好從感知器的選擇、電路板的設計規劃、感知器程式的撰寫,甚至光固化 3D 列印的外殼設計完全不假他手,全部都在資策會內完成。

廁所場域偵測器展示圖

▲智慧廁間服務實境

不過,雖然設計生產廁紙感知器的種種困難都克服了,但是萬萬沒有想到,如何固定反而是讓人吃盡苦頭的一道難題。

廁所感測器展示機圖片

▲智慧廁間廁紙偵測模組

資策會團隊與我們分享:「一開始的時候,我們用熱溶膠固定,可是清潔人員每次補充廁紙的時候都需要開開關關。震動一多,沒有很牢固的固定住,結果就是掉下來。

最糟糕的狀況是在女廁:有一次有女性旅客如廁的時候,這個感知器沒固定好就掉下來了。你會不會覺得這個感知器看起來很像針孔攝影機?這東西突然在女廁掉下來,有沒有很糟糕?(笑)

還好長官支持,我們也持續研發如何固定的技術,直到最後可以成功的牢牢固定,不然這個專案早就胎死腹中了。」

感測器與 line 連動示意圖

▲智慧廁間服務手機畫面展示

後來,廁紙偵測模組上線之後,原本清潔人員巡察一次廁紙使用量就要花掉 15- 20 分鐘,後來只需打開 APP,10秒就能查完廁紙使用量。大幅提高了效率至原本的 120 倍。

既然衛生紙的消耗量解決了,下一個難題就是洗手乳的低存量偵測了。

跟衛生紙不同,洗手乳每一次補充的量不見得完全相同。由於設計的理念是希望能夠用最低價、最穩定的元件來完成這個功能,以便於未來的推廣。最後選擇了常見的霍爾感應器,將其貼在洗手乳給皂器的外殼上,來達成偵測洗手乳即將見底的功能。

原理其實很單純,只要液面低於某個百分比,霍爾感應器就可以對液面進行電磁感應而產生電壓的變化,感知器送訊號至後端的雲端伺服器,然後跟廁紙感知器一樣,由伺服器再發送訊息給清潔人員。

二、服務流程中的關鍵績效指標 ( KPI )數位化

洗手台潮濕往往就會滲水到地板上,再加上來往旅客腳上難免帶有灰塵,一旦踩過潮濕的地板,就會使得地板髒污。視覺上就會給人「這廁所很髒」的感受。然而,廁所不可能隨時都有清潔人員值守,這時就需要有專門的感知器來偵測這樣的情況。

資策會利用薄膜導電電阻的特性,當薄膜電阻表面具有液體時就會降低整體電阻值,進而改變類比訊號輸出的相關數值。如此一來,只要在容易潮濕的表面鋪設薄膜電阻即可偵測潮濕的情況。例如窗台旁邊,或是洗手台面。

不過,由於感知器較為昂貴,而且刮傷就會破壞感知器的效能,所以後來只有特定的公廁才有導入這個潮濕偵測的感知器。

另外,除了視覺上的髒污,若是公廁傳出陣陣惡臭,即便這個廁所看來明亮乾淨,仍然會被認為是髒污的廁所。

然而,臭味的偵測可沒有那麼容易解決。

一開始,為了找到這個「電子鼻」,找遍了國內外的各種感知器,結果才從日本某個專門生產各種氣體感知器的大廠產品線中找到合適的 MEMS 微機電感應晶片。

所內接著也是從這個晶片的麵包板測試、電路設計圖、以及發包出去生產,共花了近半年才完成這個感知器的設計。

除此之外,在研發智慧廁間的過程當中,陸續也接到其他的需求,如人流偵測以及使用偵測等模組的研發委託。

感測器配置於洗手台下方呈現

▲智慧廁間感測器呈現

在開發過程當中發現,部份的無障礙廁間可能在使用過後,使用者有可能不小心把門關上,燈也忘記關,所以看起來這間廁所一整天都有人佔用。然而,真正需要使用的人反而被空蕩蕩的無障礙廁所擋在門外。這個問題相對簡單,工程師找到現成的人流感應模組,將其安裝在洗手台之下,這個問題也就迎刃而解。

另外,部份偏遠的公廁如梨山國家公園這一類公廁,對於環保減碳的要求上實在難以執行。由於地處偏遠,負責人員每天上班要去開燈,下班再去關燈。有些時候一整天卻沒有幾個遊客使用公廁,但所有的燈光以及設備都還是整天開啟,實在非常浪費電。

而一般市售的感應器非常呆板,只要30秒到10分鐘設定的時間一到,就關掉電源。或許在家中只有一個人使用廁所的情況,這樣的感知器已經堪用,但是動輒60坪的廁所,需要好幾個偵測器一起工作才能確保是否還有使用者在廁間當中,又是一個市面無售的解決方案。資策會只好整合多個感知器,另外在 MCU 上開發演算法,才解決這個需求。

三、IoT、雲端、大數據、以及 5G NBIoT 新科技的引入

創新的路上,總是有總總的困難等著工程人員來克服。而見招拆招的過程當中,也一步步的精鍊了解決方案,使它更便宜、更可靠、更便利。

在前述的各種感知器建置完成之後,這套系統也陸陸續續產生新的問題留給資策會來解決。例如使用者習慣的障礙、耗電問題、成本問題等等。

由 APP 改為更為貼近使用者習慣的 LINE 群組機器人

透過電信商、技術商、服務商擴散至場域的 Line 服務擴散系統圖

▲智慧廁間服務架構呈現

2017年首次完成松山車站約 60 坪的公廁佈建之時,是採用 MCU 搭配 WIFI 的通訊方式全天候監測並傳輸資料到伺服器上,在系統判斷異常之後,利用資策會寫的手機 App 通知清潔人員。

這個設計乍看之下似乎牢不可破,然而,由於現場清潔人員平均年齡 50 歲以上,安裝一個專門的 APP 反而沒人使用,第一線人員經常用沒幾天就把程式刪除。空有整套感知器在監控,卻沒有清潔人員真的使用。使用者習慣,往往是新科技導入面臨的最大障礙。

後來,做了一些使用者訪談後發現,每個公廁的清潔人員,都有一個 LINE 群組。

廁所設備 LINE 群組溝通使用圖

▲智慧廁間服務 Line 群組展示

資策會團隊提到:「既然知道他們(清潔人員)有 LINE 群組,那就好辦了!

我們一開始小心翼翼的詢問清潔人員,是不是可以邀請一個機器人”新同事”來幫忙巡察衛生紙以及判斷廁所的異常。

一開始的時候,清潔阿姨們還有點疑慮。後來發現這個機器人”新同事”很好用之後,反而很愛它。」

因為成本、環保、以及便利性問題,由 WIFI 升級成 NBIoT 通訊協定

WIFI的速度快,頻寬大。但是一個公廁裡有男廁和女廁,就要分開兩個系統來分別監控,而且每個系統都需要獨立的 4G 網路連上雲端系統。所以建置以及通訊成本較為高昂,而且耗電也比較大。

說到這裡,或許讀者會有疑問:公廁都是設置在公共空間當中,難道沒有公共 WIFI 網路可用?

資策會團隊給了我們很有深度的答案:「其實,確實幾乎每個公共空間都有 WIFI 網路可以使用,但是,與其他人共用 WIFI 容易受到干擾,而且 IoT 設備簡單,缺乏安全性控管的機制,若使用公開 WIFI ,有一定的安全風險。

因此,我們的解決方案中,還是設計封閉的WIFI通訊系統來解決通訊問題。

另外,由於一個 WIFI 基地台能夠支援的節點數量只有 20-30 個,一個有 18 個廁間的女廁就需要一組系統了。再加上隔了一個水泥牆,訊號會非常衰弱,甚至影響到訊號的穩定性。所以一個公廁設置兩套系統主要是穩定性考量而不是成本考量。」

人口密集的使用場域當中透過 WIFI 來傳輸資料到伺服器並不會太麻煩,然而,當智慧廁間系統開始被應用到更遙遠的廁間如梨山、谷關、獅頭山等國家公園遊客中心公廁,時時都要確保網路通暢,確實成為一道難題。

還好,5G 的新一代行動通訊網路當中有一個專門為了 IoT 物聯網設計的 NBIoT 窄頻物聯網通訊方式 (Narrow Band Internet of Things)。資策會領先全台,採用國內晶片大廠的 NBIoT 晶片組開發出台灣首套針對智慧廁間設計的 NBIoT MCU 控制系統 。

這套系統除了成本大幅下降、而且十分省電,只需要原本 WIFI 系統 ⅙ 的電量。最重要的是,比起傳統 WIFI 需要相對穩定的 4G 訊號橋接,這套系統的覆蓋範圍更廣,深山野嶺也都可以通訊。使得未來智慧廁間的覆蓋率,可以不受網路訊號的限制而更加廣泛。

四、「效應分析以及未來展望」

IoT 智慧廁間:一個乾淨、省電、便利的新智慧廁所革命!

隨著整套的各式感知器、雲端系統、NBIoT 以及 LINE 機器人陸續上線,帶來的好處十分顯著。

以松山車站公廁為例,從本來的應接不暇到後來大砍 70% 客訴量,巡察消耗品廁紙所需要的時間從原本的 15-20 分鐘縮短到只需要 10 秒。一旦有異常狀況發生,也從原本的不知不覺,到現今的立即通知。

有趣的是,意料之外的,這整套系統也順便也帶來了安全、以及徹底執行菸害防治法的附加好處。由於廁間只要有人佔用超過 40 分鐘,就會發出警告給清潔人員的群組。所以,一旦有使用者佔用太久,就會有清潔人員來敲門。安全性大幅提昇。

另外,臭味偵測器對於煙味也非常的敏感。由於國家公園全面禁煙,部份偏遠公廁常有旅客存著僥倖心態,溜進公廁偷抽煙。在國家公園的公廁中,臭味偵測器一旦偵測到煙味,就會播放一段菸害防治法的語音,讓旅客清楚知道公廁內抽煙可是要開罰新台幣二千至一萬元的。自從臭味偵測器安裝了之後,公廁使用者偷抽煙的情況很明顯的大幅減少。

後來,松山車站的「智慧公廁」因為克服了種種難題,而得到了交通部頒發的「金路獎」,因此而聲名大噪。從原本的客訴連連,變為各個公部門爭相參訪的模範公廁,讓承辦人多了許多帶團參訪的工作,也可以說是很奢侈的煩惱吧。

未來展望

這套系統因為 3 年的研發和場域實驗過程當中已經實證其穩定性和成本效應,目前已經成功技轉給國內的系統整合廠商。目前服創所也期待未來這套方案能夠擴展、甚至是技轉到歐美地區。

除此之外,在穩定可靠的數據流和通訊連線基礎之上,引入大數據來分析,或許可以讓人力的調配更加的精細,工作分配不均的問題可望得到根本的修正。

面對高齡化社會的來臨, NBIoT 通訊系統,搭配上各種 IoT 感知器,或許可以為我們帶來更健康、安全的生活環境。一些傳統上高度仰賴人力的重複性工作,也可以利用科技大幅提昇效率。

推薦案例

【導入案例】哈瑪星科技建構AI模型管理平台 加速AI落地應用
哈瑪星科技建構AI模型管理平台 加速AI落地應用

搭上AI列車,資服業者借助深厚的產業基礎,不僅自己轉型,也協助客戶轉型 成立已超過20年的哈瑪星科技,近年來不斷研發AI技術,並協助產業客戶導入AI。哈瑪星認為,執行一個完整的AI專案,除了AI理論知識、數據分析與模型訓練能力,實務上還需要依據客戶的需求開發數據串接API、建置資料庫、開發前端RWD網頁,甚至還需要考慮到版面設計與使用者體驗 User Experience。這些工作不僅對AI新創業者形成技術門檻,即便對已具規模的業者來說,每個專案反覆投入人力進行類似的功能開發,也難以累積技術經驗、加速業務成長。 機關客戶對於AI仍具備高度客製化之需求 以哈瑪星科技所執行的政府A機關的需求為例,用戶須針對特定管道的不實資訊進行管控,需要平台提供用來訓練模型和預測的數據接入功能,並可以在平台上完成自然語言處理NLP文本分類模型訓練與使用。當模型發現不實資訊時,需要即時透過通訊軟體通報相關負責同仁。而B機關的需求則是希望透過AI模型針對民眾陳情案件進行自動分類,並即時提供陳情民眾或案件承辦人員可參考之歷史案件資訊。儘管專案模式相似 數據接入、模型預測、警示通知,但在個別專案中,仍只能分別進行需求功能開發,無法重複利用既有的程式與模型來加速後續專案的執行。 在深入探討之後,哈瑪星科技發現企業面臨導入AI專案的痛點,包括導入成本高昂、專案時程冗長等,其中,在企業內難以齊備資料科學家、分析師、工程師、設計師等人才,而現階段的專案皆為集中解決特定領域需求,難以重複利用AI模型跨入其他應用領域,同時,因為工具集中在AI專案領域,無法滿足客戶提供整體解決方案。 換言之,在AI技術的落地上,由於AI資服業者往往面臨「人力有限」、「領域限縮」與「工具不足」等困境,致使專案執行成本高昂或時程冗長。這些都是業者們亟需解決的共通性問題。因此,若有一個AI模型應用服務管理平台,將可解決上述困難,不僅能夠快速導入降低成本,還有助於縮短專案時程,提供客戶一站式解決方案。 AI模型應用服務管理平台協助快速完成專案 因此,哈瑪星科技在經濟部工業局AI計畫支持下,進行「AI模型應用服務管理平台AISP研發計畫」,投入研發AISP產品,目的是為了讓AI資服業者能事半功倍地完成AI專案。 AI模型應用服務管理平台提供AI一站式解決方案 透過AISP,AI資服業者可透過既有的模組功能快速組裝數據API介接、模型管理與模型預測結果監控訂閱等需求功能。同時也提供常用的圖形化工具,幫助業者快速設計用戶所需要的互動式圖表或儀表板,有效降低執行專案所需要的人力成本,並縮短解決方案POC或導入時程,加速產業AI落地與擴散。 在產品商模上,短期內將廣邀具備AI專門領域技術的資服業者合作,藉由平台服務解決各類場域需求單位所面臨的AI導入問題,逐步建立平台品牌信賴感。 中期則盼以哈瑪星過往的成功經驗逐步拓展業務市場,聯合多家資服業者建立策略聯盟,針對專門領域可解決更多且廣泛的問題,並提供更多解決方案供場域單位選擇。 平台結合領域專家共同擴展海外市場 長期而言,在建立各項專門領域的AI策略聯盟後,平台將擁有大量針對專門領域的AI解決方案專家,累積大量的專案成功經驗後,哈瑪星科技期望AISP將能與專家業者們攜手合作,共同進軍拓展國際市場。 哈瑪星科技股份有限公司於民國89年延攬多位資深專業經理人及相關領域技術專長人才所組成,致力於軟體技術研發暨服務,並以建構成為國際級軟體公司為目標,積極促成各項跨國產業合作機會。公司在首任總經理的優良領導之下,已快速成長成為臺灣主要軟體公司之一。

這是一張圖片。 This is a picture.
基於人工智慧的PCBA表面瑕疵檢測改善

隨著AOIAI系統的導入,我們將能提高產品良率、降低成本,從業務面來看,更可提高客戶的信任度,增加營業收益。而且AI具有難以被模仿的優勢,並非如其它設備只要花錢就買的到,讓我們的競爭對手難以追上我們。 組弘發展現況 我們致力於IOT智慧製造上,自行開發的系統已有智慧物料系統、環境溫溼度監控系統、防錯料系統、智能採購算料系統、智慧物料盤點系統、錫膏管理系統、生管系統。過去我們曾詢問過其他廠商,有關AI檢驗PCBA表面瑕疵的可能性,每個廠商都希望我們能夠購買其設備,但實際驗證後都無法達到效果,此次與資服業者討論過後,定調為AOIAI的運作模式,方覺得有可行性。 組弘科技投入AOIAI檢測計畫,用於檢查SMT零件上的文字、焊點、極性、缺件hellip等,用AI替代人工來學習AOI檢測後定義為rdquo可能是不良品rdquo的部份,提升人員產值與降低誤判率。 產業痛點 nbspnbspnbsp 台灣缺工情形嚴重,尤其願意從事目視檢查的人更少,而且年齡相對較大,檢查遺漏的狀況越來越嚴重。所以在追求高品質電子產業中,最關鍵的瓶頸已經是生產後的檢查。過去的消費性產品,異常未能被檢出,只要在一定比例下,也可被接受。現在的汽車產業如果有不良未被檢出,即有可能造成人員死亡,所以汽車產業對於品質的要求極高。要想在汽車產業的供應鏈中生存,就必須解決異常無法被檢出的問題。 nbspnbspnbsp 而且隨著台灣工資越來越高,只能設法以AI技術,取代傳統人力,否則就算解決了異常流出,但相對高的人力成本依然無法在此產業中競爭。 應用技術與說明 nbspnbspnbsp 原本過程圖一,PCB從出來Reflow後,會經過AOI檢測,分出「疑似不良品」與良品,這時「疑似不良品」的部分約為20,再由人工針對這20的部分來做複判,再將「疑似不良品」的部分區分為良品與不良品。 nbspnbspnbsp 我們想要藉由AI的技術,將原本由人工複判這20的「疑似不良品」改由AI來做,複判出來一樣會有良品與「疑似不良品」,結果一樣會有「良品」與「疑似不良品」的產生,但此時「疑似不良品」約只剩下3,也就是說組弘作業人員的工作量會從20降到只有3。理論上是AOI檢查完後,再由AI來做複判,但從表面看起來似乎只有經過AOI而已,所以我們才將這個技術稱之為A0IAI檢測圖二。 原本AOI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI 檢測不良品資訊,再經由人工逐一覆判是否為不良品。 AOIAI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI檢測不良品資訊後, 進由AI先進行AOI檢測不良品的覆判,輸出AI檢測不良資訊後, 再經由人工逐一覆判是否為不良品。 流程差異 nbspnbspnbsp 藉由AOIAI系統的導入,我們除了能夠提升目視檢查人員的效率與良率外,我們有了這次AI的導入經驗,以後也可將AI與大數據的運用加入到組弘原有的智慧製造系統,使我們的智慧製造系統的效能更提升,更進一步的減輕員工的工作壓力。 導入前後差異說明 推廣策略 1nbspnbspnbspnbspnbspnbsp 同領域擴散:所有SMT製造業皆會遇到檢查瓶頸導致延誤出貨的狀況,導入此系統可解決目前缺工嚴重問題並提升出貨速度與品質,自行向客戶推廣或透過設備商銷售給相關需求者。 2nbspnbspnbspnbspnbspnbsp 異業擴散規劃:與AOI製造商洽談直接將AI系統掛在AOI系統內,增加其市場競爭力。 nbsp 獲利策略 1nbspnbspnbspnbspnbspnbsp 與AOI製造商合作收取授權金。 2nbspnbspnbspnbspnbspnbsp 與SMT製造業直接銷售AI系統。 3nbspnbspnbspnbspnbspnbsp 提供SMT製造業AOIAI系統訂閱制

這是一張圖片。 This is a picture.
測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。