:::

【110年 應用案例】 以AI補足傳統產業經驗傳承的斷層 塑料再生製程之產量預測分析

當傳統產業仰賴的老師傅越來越少

在台灣,中小企業一直以來扮演著台灣產業的中堅實力,陪著台灣走過各種「經濟奇蹟」的時代。但隨著時間演進,昔日的師傅也逐漸變成了老師傅,再加上台灣社會的少子化現象,以及整體產業結構的變化,越來越少新一代的年輕人願意進入傳統產業,如今也可以發現,大多中小企業內的機具操作現場,已經由「老師傅」搭配「外籍勞工」的組合形成主流,而身為現場經驗活字典的老師傅們,卻也缺少後續者能夠持續傳承經驗,逐漸產生了傳統產業的現場經驗難以持續傳承的現象。

傳統人工作法優化製程的極限已在眼前

位於台南保安工業區的「唐先企業」,於1972年創立,以製造優質的編織機具設備起家,同時具備有製造機具之實力,也因為近年來隨著響應國際間綠能、再生、環保,唐先企業積極研發塑料環保再生設備,最終以簡約高效的機體設計,輔以先進智慧化的核心控制技術,成功研發出低能耗、低廢料、高純度、高產出的回收製粒設備。

▲唐先企業自行研發的塑料回收製粒設備

但在塑料再生的生產作業過程中,當高達數百種的原料種類,對上十幾種的製程溫度、轉速參數,所面臨的是成千上萬種參數組合。以往都是依賴現場員工(老師傅的經驗)去調整各種生產製程條件。因此往往在轉換生產不同來料(如:PET、PP、PE)的過程中,會因為嘗試階段浪費掉不少原料。

傳統產業的專業資訊能力缺口

唐先企業知道數據資料的重要性,因此過去雖然有將製程參數紀錄下來,卻因為當時缺乏數據化的能力,主要以紙本形式,由現場的操作人員以人工操寫紀錄寫下來,累積了大量的紙本數據,但也因此缺乏具科學化且詳實的數據資訊可供即時參考與調整。

製程參數的手抄本,每小時記錄一次十幾種機器狀態與產量數字

▲製程參數的手抄本,每小時記錄一次十幾種機器狀態與產量數字

在品管方面,也因為缺少產出的品質管制與單位時間產量的監控與反饋機制,導致實務上難以預測每一批的生產條件的獲利狀況,生管單位最後只能從結果去估計與平均攤提過程中的各種產能與成本的變化,無法客觀與即時地讓產線以最短的時間恢復合理的生產條件或當面對品質異常作出更明確的調整。

現場實況(左圖為回收碎料;右圖為造粒成品)

▲現場實況(左圖為回收碎料;右圖為造粒成品)

台灣廠商的機具製造能力十分堅強,許多現代化的機具已經具備了數據化功能,能夠將實時的狀態與資訊以物聯網的方式記錄下來。然而在工廠的現場與資訊系統的基礎建設是否已經準備好了呢?

當老師傅遇上AI

唐先企業透過政府相關單位引薦,與台灣資料科學公司媒合,共同攜手將導入AI服務與運用AI優化內部流程的構想與應用情境,先以廠內中型塑料再生產線作為試煉場域,建立成功標竿後,將此模式擴展至工廠內大型塑料回收再生機械設備上,持續驗證與應用。

首先雙方共同將過往之手抄紙本資料,以OCR輔以人工修正方式,將過去的參數資料數據化。唐先企業也與機具之人機介面廠商將操作面板以及參數數據導入之工廠之資料庫,使得能夠即時監控機具狀態,免除人工抄寫的繁複或錯誤性發生。

塑料回收再生造粒之機具面板,顯示當前各製程的溫度、轉速與使用電力的狀態

▲塑料回收再生造粒之機具面板,顯示當前各製程的溫度、轉速與使用電力的狀態

同時台灣資料科學公司再將數十種參數資料進行AI建模,透過情境分析,在環境參數與材料投入下模擬各種的產出可能性,找出關鍵特徵參數,並提供參數調整建議,降低試驗階段所需成本。

將數據分析應用於傳統產業機具製程中

▲將數據分析應用於傳統產業機具製程中

當老師傅取得原物料之後,只需輸入相關料件特性參數,由系統自動生成建議的製程參數,再經由老師傅微調之後進行料件的試作,有效減少了錯誤嘗試所造成的料件、水費、電費以及人力的耗費。並且唐先企業更超前部屬,在塑料再生的製程上導入了「生產履歷」的概念,能夠透過掃描QRCode,取得該批產品的原料、製程等相關參數資料。

塑料再生造粒的產銷履歷

▲塑料再生造粒的產銷履歷

台灣中小企業機具實力堅強,只待「數據」的東風吹起

在工業2.0到3.0,甚至到4.0,許多台灣中小企業在轉型過程所面臨的問題,並非只是在機具升級上,而是把錢用在購入了現代化機具設備之後,產生了數據,卻不知道如何利用這些數據,若要這些廠商們自己培育一個專門的數據分析部門又顯得不太實際;在此同時的另外一面,台灣也有非常多軟體實力堅強的AI或數據分析的創新團隊,空有技術與實力,卻苦無場域與數據。因此若能夠充分的結合台灣傳統產業以及AI數據分析的創新團隊,除了能夠彌補現今傳統產業所面臨之人力與經驗傳承問題之外,也能夠讓台灣的AI發展與應用上往前跨進更大一步。

推薦案例

這是一張圖片。 This is a picture.
AI走入公益,食(實)物銀行也有時尚科技

社團法人台灣食物銀行聯合會以下簡稱本會以食物援助、貧困救濟、減少食物浪費、建構無飢網絡為組織宗旨,在台灣各地已有55個食物銀行據點,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 但各據點皆需大量人力與志工以傳統聯繫方式處理食物銀行日常事務,聯絡非營利組織與捐贈機構,為據點收到物資捐贈後,再分配給有需要的家庭戶或個人。在物資管理上缺乏數位化與整合資訊,可能產生物資資源分配不均問題。 倉儲轉運中心與迷你食物銀行 分配弱勢物資 本次場域驗證單位社團法人高雄市慈善團體聯合總會食物銀行據點之一,以下簡稱高慈總 於109年6月24日正式啟用台灣首座「食物銀行-倉儲轉運中心」佔地200坪,提高食物物資再分配、運用之效益、妥善存放及食物物資管理,至今已搶救近二百噸蔬果續食,服務一百多個團體、逾5萬戶弱勢家庭受惠,持續服務19家迷你食物銀行,將於高雄多個行政區陸續落成,分配食物物資給超過10萬人次弱勢家庭。 高慈總「食物銀行-倉儲轉運中心」於高雄大社區 照片來源 社團法人高雄市慈善團體聯合總會 人力與食物物資管理的挑戰 面對大量經濟弱勢家庭的需求,「食物銀行-倉儲轉運中心」的管理顯得格外重要。進貨時需進行分類整理、汰廢、入帳等繁瑣的工作,出貨時則需參照社工員的食物物資需求做配置建議。這些工作都需要依靠人工判斷及經驗累積。而參與的志工多為高齡人士,體力有限,而倉儲工作需耗費大量體力,志工的招募困難重重。倘若有大批食物物資進庫,在調配上會耗費空間與人力整理、盤點,並同時擔憂食物物資是否能有效的被運用及周轉。也顯示出食物銀行服務逐漸擴大規模,但人力與物資管理系統無法隨之配合。 同時食物銀行物資來自各界之捐贈,故類別多樣且效期、規格、數量也均不相同。迷你食物銀行的志工夥伴,多數也為高齡人士,但卻需執行個案服務、食物物資管理配置、物資資源開發等多重職責,有時也需向物資領用者說明並接受即期、大量特殊性的物資,如成人接受嬰兒奶粉。 「食物銀行-倉儲轉運中心」物資盤點需要皆仰賴人力 迷你食物銀行志工具多重職責 照片來源社團法人台灣食物銀行聯合會 報廢物資減少60 物資轉遞速度增加80 為精進物資管理並達到物資有效利用,並解決人力短缺等問題,在本次場域實證案導入「食物銀行倉儲物資募集AI自動預警需求判讀系統」,第一部分為建構分類模型之前置作業,建置以及蒐集場域倉儲資訊,進行AI建模訓練,將過往場域倉儲資訊收集建置成資料庫,使AI可進行預處理、分類等工作。同時視其物資種類之相依狀況作為特徵值,導入演算法中進行運算建模,再依收集之資料進行重新訓練,最終進行場域驗證並針對經常性五大類物資進行數據整理,以建立數據資料所需之訓練及測試資料集,第二部分以演算法之RNN技術建構分類模型;進一步利用強化學習建構食物銀行倉儲管理機制,使分類完善之受贈物資如白米、沖泡飲品、麵條、泡麵、罐頭等可以根據儲位指派原則自動指派儲位。 AI服務系統服務流程與說明 資料來源社團法人台灣食物銀行聯合會 在AI預判下,可優化物資轉遞速度及物資調配,有效精準配對物資捐贈並降低捐贈歷程的損耗,增加物資分配正確性,提高媒合服務率即捐贈成功率,降低錯誤物資造成人力物力浪費,即時監控食物物資的庫存,確保操作者能夠迅速回應需求,有效提供物資援助。 以AI系統的導入,加上數據智慧化建置,協助倉儲轉運中心的運作,可爭取更多時間分配捐贈物資使用。導入加速社福團體數位化服務推展,完善照顧整體社會弱勢群組之需求。 使用系統進行物資分配調度 照片來源 社團法人高雄市慈善團體聯合總會 透過本次的場域驗證後,未來可推廣至食物銀行其他服務據點導入AI系統,也可與更多非營利組織、公益團體、慈善團體等夥伴合作,擴大「食物銀行倉儲物資募集AI自動預警需求判讀系統」應用範圍如醫療用品配送,幫助更多組織更智慧化地管理和分發,減少物資的浪費,以提高社會福祉。

【解決方案】搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇
搭上綠能商機 華鉬實業打造全釩液流電池儲能系統設備 長效儲能的最佳選擇

綠能是未來趨勢,必帶動未來龐大商機。而風力發電是近年全球矚目綠色能源之一,將成為我國再生能源重要生力軍、幫助台灣發電量於2025年達到20的目標,以提高台灣能源自主性。隨著國內風力發電機風機組數量和電量逐年增長,如何讓儲電設備達到安全、長效性、充放電不易衰減和永續低碳又環保的技術能量顯得格外重要,同時風機設備本身的健康檢測、保養與維修也成為風場業者關注焦點。為滿足風場客戶需要,華鉬實業旗下綠能事業部門推出長效儲能的全釩液流電池電解液及風機AI預測性運維,提供100安全、長效性且可降低客戶初製成本的電力儲能設備,並透過AI預測性運維服務協助客戶降低發電度成本10,節省最多30維護保修成本。 華鉬實業成立於1998年,本業以提煉釩、鉬及稀有金屬元素等製品起家,並運用於高階鋼鐵、專業化工及特用化學品等行業,而釩更如同煉鋼的維他命可加值煉鋼的成效。其中釩、鉬相關製品為公司主力項目之一,公司看見100以釩元素為主的全釩液流電池在長效儲能上未來將是相當被看好的綠能技術主流,並且2010年以前政府已積極請法人如工研院在固態電池和全釩電池進行相關零組件材料投入研究,再加上經濟部期許再生能源在2025年發電量佔比達20目標並達15GW,基於上述考量,華鉬實業決定於2017年全力研究與投入自主開發的全釩液流電池電解液的技術開發,以藉此加速2025年再生能源的達標率。 華鉬公司指出「再生能源的電源較不穩定,而台灣本身缺乏鋰資源,在鋰電池製造上幾乎80-90電池芯必須倚賴國外採購,缺乏100國內自足自給的儲能資源與技術。」同樣地,對於本身沒有天然釩礦資源的台灣是如何克服呢 為此,華鉬實業利用獨創技術,透過石化業如中油煉油廠或台朔石化製程中的廢觸媒,其中有高達10釩離子成分可提煉出高價值的釩礦資源,藉此生產出台灣100自主自製的全釩液流電池電解液且不受資源影響,有效達到資源循環再利用。自2017起華鉬實業已成功打造出全釩液流電解液技術,並順利通過工研院和核研所及多家國際大廠的產品驗證。 台灣在儲電能量目標於2025年要達15GW,其電力分配包含500MW於台電的自動調頻系統、500MW於E-dReg及500MW於既有或新設的太陽能電廠,以太陽能電廠的用電使用為例,主要以下午4點到晚上10點用為民生用電尖峰時段,為此,能源局特別要求台電必須加強儲能設備的升級,也因此帶動市場上對全釩液流電池儲能系統設備的高度需求。另外,台灣在目前總儲備電能的建置與貢獻尚未達到100MW,距離2025年目標15GW儲電量仍差距15倍以上。 運用全釩液流電池 成功打造100安全、低碳環保又長效性儲能系統設備 相較於鋰電池的短效電力儲能,全釩液流電池的最大優勢為全球公認可長效性的儲備電能,可以長時間儲能達12小時,代表若充12小時電力,則可以釋放12小時電力。相較於一般儲能系統的計電方式也就是每日用電度數功率以千瓦為單位 x時間以小時為單位,對全釩液流電池而言,功率和小時數是各別設計,該功率又稱為電堆,是由金屬、高分子模、碳氈和石墨板等四種材料組成,而該用電時間改以電解液的量以立方體為單位來計算,因此當功率電推 x電解液的量我們每日運用全釩液流電池儲能的用電度數。 全釩液流電池儲能系統設備之產品特色方面,包含安全性、長效性、充放電不易衰減和永續低碳環保性等四大特色。全釩液流電池品質是100安全,由於電能是儲存在含釩的電解液中,能避免儲飽電的儲能系統造成任何易燃事故發生。在電池壽命上,相較於鋰電池的電池壽命短暫,全釩液流電池透過價數變化可高達20-25年以上電池壽命。對於儲能的充放電性能,不像鋰電池有一定充放電次數5000-600次,全釩液流電池的充放電次數是沒有限制性的。對於全球高度重視的零碳排放,不同於鋰電池有回收議題,全釩液流電池的電解液可永久使用,該電堆材料成分是環保的且可完全回收,以打造真正永續性又低碳環保的儲能系統。 陸域風機AI預測智慧運維 讓客戶降低發電度成本10 省下維護保修成本高達30 華鉬實業不只透過全釩液流電池儲能系統設備提高再生能源客戶長效儲電效能、協助客戶降低初置成本,更透過離岸與陸域風機AI智慧運維實證計畫在台電的陸域風場的場域實證,積極累積自家在AI預測性運維的技術經驗和能量。在經濟部工業局AI HUB計畫支持下,合作場域將以台電公司路域一期風場為主並提供6個月以上風機的智慧運轉數據進行分析。本次陸域風機的AI預測運維系統,採用機器學習方式,主要技術提供者來自英國British PetroleumBP石油集團的子公司ONYX Insight,該公司透過AI Hub分析軟體技術進行台電面臨的風機痛點分析,包含路域風機的發電量損失和陸域風機的關鍵零組件如齒輪箱、變槳軸承hellip在異常震動三維的振動頻率或異常溫度等狀態下進行損壞預測等報告產出。透過本次落地實證可有效協助台電降低發電度成本10,增加資產價值12,節省最多30維護保修成本。近三年ONYX Insight在全球已成功預測運維2萬台以上離岸或陸域風機,累積極高的AI模型準確率。相信透過與ONYX Insight建立的國際合作夥伴關係,將有效輔導並加速華鉬實業的綠能事業部在邁向成為風機AI預測性運維的獨立科技服務提供者之目標與布局。 與合作夥伴ONYX insight提供客戶AI預測運維系統,包含風機發電量損失與風機關鍵零組件之損壞預測 厚植國內風機運維的基礎 以台灣為基地 拓展到東南亞風場 離岸風機AI預測性運維未來在台灣將超過300億台幣的的市場產值,儲能市場在全球更是有千億美金以上的產值,在未來公司願景,華鉬實業期許能成為釩液流電池電解液及風機AI預測性運維的獨立技術服務提供者。而長期目標,透過累積豐厚技術及實績資本,在世界各地建立釩液流電池電解液之在地供應鏈,就近供應產業需求。

【導入案例】AI嘛會煮咖啡 無人烘豆機靠AI 精準設點與培養忠實客群
AI嘛會煮咖啡! 無人烘豆機靠AI 精準設點與培養忠實客群

你早上來杯咖啡了嗎 臺灣於過去十年以來,逐漸形成一股喝咖啡的文化風潮,隨著AI技術的精進,無人烘豆機也能靠AI精準設點,同時培養忠實客群,我們來看看,這是如何辦到的 根據國際咖啡組織 ICO 調查,國人一年喝掉約 285 億杯咖啡,臺灣咖啡市場規模上看 800 億元,且每年約有 20 成長。 臺灣近十年來,人手一杯的「喝咖啡」文化,已成為流行的代名詞,而「咖啡」甚至以65的高比例當選為國人平日最常選擇的飲品,其中重度咖啡愛好者的族群更願意花費更高的價錢去選購符合自身口味的咖啡豆來享用咖啡。近兩三年來,越來越多無人飲品販賣店於臺灣飲品市場上問市。 無人咖啡飲品店無法快速展店,主要受到兩大問題困擾,一是客流量與機器設點位置的合適性,往往仍需憑藉人力進行評估分析;二是如何精準打入中高階咖啡愛好者市場 AI解決無人烘豆機設點合適性與培養忠實客群兩大難題 為解決上述兩大問題,協助無人烘豆機能迅速打開市場,昇銳電子擬以透過導入AI 人流計數分析與AI 人臉陌生辨識,來針對無人烘豆機的設置地點進行人潮數量計算,且歸類消費者的性別及年齡,以進行更為精準的商情分析;並提供消費者對於烘焙咖啡生豆的多重選擇,期以給予專業的咖啡愛好者更客製化的服務與貼近其需求和個人口味的一包「高品質烘豆」。 自2018年起,無人販賣店的興起,無非是因為業主想減少不斷上漲的租金與人事成本的費用支出,但在店面設點的初期評估,卻仍需花費鐘點人力費以人眼計算客流量,但人非機器,難免會有計算來店消費者與道路上經過人潮的錯誤率,而無法做到精準的即時客流分析,或甚至經過一段試營運後才進行估算是否達到設點的營運效益,以上皆會造成錯失最佳撤掉設點位置的停損時機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,推出無人烘豆機。 昇銳電子搭配AI人流計數分析和AI人臉陌生辨識,與帶來「黑金」風潮的咖啡進行商機結合,並且抓住臺灣眾多咖啡行家喜歡親自至量販店耐心挑選符合自身口味的咖啡生豆與喜愛去高品質的研磨咖啡廳或連鎖咖啡店之消費習慣與特點,故誕生針對咖啡豆產地、品種、烘焙方式等提供選擇的第一台無人咖啡烘豆機之新創概念。 AI烘豆機提升客戶忠誠度與物料管理效率達20 針對無人烘豆機的精進開發,昇銳電子工程師搭載AI NVIDIA 開發平台於TCNNFacenet 的基礎上進行,透過AI 將關於性別及年齡搜集之數萬張的影像資料進行樣本訓練,以針對首次選購咖啡烘豆的消費者也能利用人臉陌生辨識來簡單地歸類,藉此取得消費者的信任並提升使用意願,並進而進行購買資訊紀錄及未來商品購買推薦以產出消費者購買行為分析,便可使業主參照消費者對於不同咖啡生豆的偏好度高低,作為未來物料準備數量之依據,以降低原物料轉運及庫存問題,並提升物料管理效率達20。 再者,業主可透過放置此無人烘豆機於選定之人流匯聚率高的地段內,便能透過攝影機捕捉人潮,並針對機台擺設位置的客源是否充足,進行對於經過人潮數量的計算,進而評估消費者佇足購買機率的高低,並於短時間內分析出是否需要將機台進行移設,並可更容易地瞄準出中高階咖啡愛好者所在的最佳設點位置。 而關於無人烘豆機有專業烘焙模式介面,其針對咖啡生豆的產地來源、品種、烘焙方式(淺中深焙)、入豆與出豆溫度、轉速溫度與目標溫度等跟溫度、風速和秒數相關之選擇,提供消費者多種選項以烘焙出符合自己愛好的客製化精品咖啡豆。而若過程中業者針對機台有要進行改善的需求,工程師能配合調整韌體參數,也能協助與業主的訂單系統進行整合。 服務人員簡述無人烘豆機的操作方式 「黑金」透過AI 可更深入至咖啡廳、科學園區、商業大樓 此一無人烘豆機針對咖啡行家的客群,不僅能設點於中高階咖啡廳,以烘製相較於在量販店購買更為客製化的咖啡豆,更能在製作完成一包咖啡豆時,即時提供給咖啡廳內專業的技術店員協助進行咖啡研磨與手沖,而剩餘的烘豆也能將其帶回家之後自己沖泡與享用。在這之中也為咖啡廳帶來了附加價值,其可更加了解消費客群對於咖啡豆的偏好程度,並能推出更能吸引顧客的飲品促銷活動與進行合適的備料管理。 而除了咖啡廳,無人烘豆機也能透過AI 人流計數分析,精準設點於科學園區與商業大樓裡或附近店面,以提供其有高度飲用咖啡需求的內部員工,於辦公室也能手工沖泡的優質咖啡豆。另外,更能推出實體會員制以隨時發起選購咖啡豆之促銷活動,或不定時提出支付優惠回饋,進而吸引到新客源與培養既有顧客的忠誠度和黏著度。 智慧無人烘豆機的操作介面