【111年 解決方案】 比客戶更了解客戶 疫情引發商機 偲倢科技業績翻倍

「COVID-19疫情之後,雖然無法出國,海外業務拓展受阻,然而,受惠於疫情之後,AI視覺光學檢測(AOI)需求高漲,帶動另一波業績的高速成長」,偲倢科技創辦人兼總經理陳青煒表示,公司在視覺瑕疵檢測的起步比較早,累積豐富經驗,使得2021年業績較前一年大幅翻升數倍之多。偲倢科技AI技術前景深具潛力,募資計畫也成功先後獲得工業電腦龍頭企業等策略投資人青睞。
搶攻AOI市場 AI光學瑕疵檢測成為成功落地應用項目
「AOI的缺口是瑕疵檢測,由於瑕疵無法明確定義,為符合客戶不能將有瑕疵的不良品流出去的需求,往往將良品打成不良品,導致過殺率往往很高,不僅墊高製造廠的成本,無形中造成資源的浪費」,加上因應產線人力不足的情況,製程自動化呼聲高,為陳青煒創造難得一見的商機。AI光學瑕疵檢測成為偲倢科技切入AI落地應用的重點。
累積近8年在產線自動化的經驗,偲倢科技將客群鎖定在被動元件、連接器及半導體等三大產業,將蒐集的產線產品瑕疵資料建立成龐大數據庫,由於偲倢科技起步早,位居先行者的地位,持續將數據庫的資料進行優化,豐富的經驗對客戶的需求能很快掌握,收斂客戶的需求並提出解決方案。
偲倢科技運用視覺辨識、深度學習等技術,發展光學檢查AOI演算法,打造AI瑕疵檢測方案,準確率大於99%。在具體效益方面,運用在半導體產業,過殺率可由平均5%-8%大幅降至不到3%,而被動元件過殺率也可從5%降至1.2%,可為客戶省下近新台幣近3億元的支出,不僅減少人力資源浪費,更使得偲倢科技成為客戶永續智造的好幫手。
自2019年底爆發COVID-19疫情,改變全球生活及工作型態,疫情期間,由於避免人與人之間的頻繁接觸,製造業工廠自動化的需求大幅攀升,偲倢科技在業界做出好口碑,生意源源不斷上門,使得客戶數及營收翻倍成長。
致勝秘訣:跟著客戶腳步前進,永遠比客戶想得多
除了台灣之外,偲倢科技也將觸角延伸至中國及越南市場等台商聚集的市場,中國團隊預估從3、4人增加至10人,越南也希望有5人團隊貼近客戶進行服務。
「偲倢科技都是跟著客戶腳步走,客戶在哪裡,我們就在哪裡」,陳青煒接著表示,疫情雖然帶來AI自動檢測的另一波需求,但受到國境管制影響,出差不方便,海外市場部分需要駐地人員就近服務,包括諮詢診斷、AI導入、校調等,均需由專人服務。
偲倢的自動化軟體開發平台將已模組化的視覺檢測、運動控制、I/O控制、AI分析等功能整合,再搭配人工智慧訓練軟體「AINavi」,一台散熱片檢測機即可完成多種檢測項目,且可持續訓練AI深度學習模型,進一步降低機台漏檢率並讓檢測質量更臻完善。藉由AINavi 與自動化整合已經可以滿足客戶需求的大部分功能,再依據不同業種,不同客戶的需求提供所需的小部分客製化服務,即可快速提供不同客戶所需的解決方案。
深獲策略投資人青睞 工業電腦企業、創投相繼投資
偲倢科技在製造業AI+AOI檢測領域已闖出一片天,並受到策略投資人的青睞,2019年工業電腦龍頭企業策略性投資偲倢科技,將AINavi深度學習視覺檢測工具整合企業完善的硬體平台,雙方的合作結合出更完善的服務方案給客戶,創造「以大(大廠)帶小(新創)」的典範雙贏案例。
2022年2月偲倢募資再傳捷報,創投創新基金投資入股,原有大股東們也皆跟著再投資,偲倢科技順利完成Pre-A輪的募資,短期內將持續擴張業務,並在中國、越南站穩腳跟,未來計畫將建置包括被動元件、連接器及半導體產業領域的專家系統,深化領域知識及數據分析,為客戶創造更高的價值。 偲倢科技自詡為製造業的管顧公司,也就是透過顧問服務,診斷、導入、系統上線、人員訓練、模型優化、AI模型管理等,提供客戶最適切、最有價值的顧問服務。
推薦案例

赫紀有限公司到「台灣兒童發展早期療育協會台東辦事處」舉辦一場AI故事繪本的互動教學,讓兒童、老師、家長一起進入沉浸式體驗教學。 AI生成兒童繪本教材 AI學習平台 nbsp 近年來台灣社會結構的改變,加上在醫院急診的經驗中,我們常常忽略了青少年所表現出的憂鬱症狀,導致孩子們出現自傷甚至是自殺的悲劇。孩子們憂鬱的產生往往很大部分都來自於學業上的表現,家長擔心孩子未來沒有競爭力,因此給予很多壓力在學業表現不佳的孩子身上。 nbspnbsp 一個家庭兩個孩子,有著相同的基因來源,提供相同的成長資源;我們發現第二個小孩通常在課業上的表現都不盡理想,成績不好,上課無法專心,就連看漫畫、打電玩也都無法有耐心與毅力完成,到底差異點在哪裡,我們一直在探索問題是如何發生helliphellip結果發現原因是幼兒時期對學習力出現障礙而沒有發覺。因後天環境因素導致學習力出現遲緩的孩子,八成以上的家長不會承認,也沒有意願帶孩子診療,主要擔心孩子會被貼上遲緩兒的標籤,因此孩子的學習力從幼兒時期就被迫遲遲了,進入國小國中後課業加重,落後幅度更大,家長生氣,孩子力不從心,家庭爭吵增加了,家長擔心孩子學業跟不上,便開始要求孩子要去補習,如果成效不好,花錢得不到好效果,則再次發生家庭革命,這些事件的不良循環都逐漸造成許多孩子在成長過程中累積了很多負面情緒進而影響健康的種種因子。 其實孩子考不好、學不會、不喜歡學習新事物,甚至產生影響健康的心理病症,背後很大的原因其實是幼兒時期學習遲緩累積造成的。六歲前是學習遲緩治療的黃金時期,若能在黃金時期可以發現與協助輔導,孩子們的學習能力將有機會可以被改善與得到10倍成效目前產業的痛點為以下 1缺乏學習力檢測方式市場缺乏樣本數據庫比對 2傳統家長思維迷思輕中度怕被貼標籤延誤治療 3缺乏治療教材教具治療行繪本和系列課程圈乏 本計畫將研發一個國家人才發展的生根輔助系統,利用 AI 技術發展出影響人一生健康的幼兒學習力檢測系統,陪家長共同守護孩子的「健康從學習力檢測」開始,早期發現、早期治療。在未來,台灣所有的孩子,不論出身,都能在幼兒時期將一生健康扎好根,長大後,孩子都能成為台灣國家發展的有用人才。 nbsp 2、nbsp 計畫內提出之AI應用技術與說明: 「兒童語言能力AI分析模型」。用以對「兒童表達一件事情」的「國語使用狀況」的「量化分析」。 情境:幼教師引導孩童敘述繪本內容。AI工具解析孩童描述繪本內容所使用的語句,並透過統計演算法量化分析孩童使用的語句。 分析指標:以「句型」及「語詞」為分析指標。分析內容包括:句型正確性、語詞多樣性、語詞使用數量、語詞使用正確性。 應用:單一孩童與同儕間語言能力分布的比較分析,可提供幼教師對不同孩子提供更細緻的語言能力教學。 使用技術:中文斷詞(中文分詞)技術、中文詞性標記技術、中文句法規則分析演算法、量化分析演算法。 使用工具:中文斷詞工具、中文詞性標記工具。 nbsp 3、nbsp 預期達成之產業價值: nbsp成立學習力檢測與輔助系統,透過治療型繪本與課程與幼兒園合辦學習力養成基地,讓孩子別停留在起跑點,陪家長守護孩子健康,從檢測學習力開始為目標,以強大樣本數據庫為後盾,提供家長早期發現孩子在學習上的延緩,協助孩子找回學習力。 nbsp 4、nbsp 預期達成之產業效益(經濟效益及未來擴散性、帶動性): 透過本計畫,只要協助遲緩孩子學習力能大幅提升,孩子是國家的主人翁,自然可以幫助國家在人才發展上得到看不到但非常實際的潛在影響力。同時,學習力養成基地的目的,就是要幫孩子找回家長,以增加孩子與家長互動的時間,讓孩子可以拋去單純 3C 的單面向互動變成與家長雙面向互動。這將潛在影響被環境耽誤有潛在能力的孩子再次得到機會發揮。

因應製造業少量多樣的客戶需求,亟待可以找到從雲端到終端的AI解決方案。慧演智能提供軟硬整合解決方案-BailAI影像檢測解決方案,來協助傳統製造業提升製程效率及產品品質,達到轉型的初步目標。 政府宣示2017年為台灣「AI元年」之後,台灣AI新創公司如春筍般林立,成立於2018年的慧演智能即鎖定智慧製造,提供AI影像分析與流程優化的平台,以深度學習的方式檢測產品的瑕疵和組裝的步驟異常,協助企業建置從終端到雲端的基礎設施,讓工廠生產端可以自動化監控,以提升製程的效率和品質。 熟悉產線品管流程 以AI影像檢測作為創業主軸 慧演智能創辦人暨執行長劉雅雯年紀輕輕,在大學畢業之後即進入製造業,在硬碟零件的塑膠射出製程擔任品管職務,「當時已經在產線上,對於生產機台的產線流程相當熟悉」,她之後轉換跑道擔任行銷企劃、接著又擔任過AI產品經理,在時機成熟之後,劉雅雯決定創業,以製造業的AI影像辨識作為創業主軸。 「企業的困難在於缺乏AI開發團隊,即使有了AI團隊,開發專案要花很多時間,至少6-12個月」深諳市場痛點的劉雅雯表示,平台要解決的問題是提供傳統製造業不需要程式開發背景的員工,也可以自行打造AI模型的平台,從遠端協助產線的故障排除及後續的系統維護作業,來幫助企業節省開發時間及人力成本。 BailAI影像檢測平台使用場景 面對市場上提供AI影像辨識的競爭對手非常多,慧演智能的技術優勢何在劉雅雯表示,現階段許多企業備有AOI光學檢測設備,但AOI光學檢測在應用上的瓶頸是,只能用於產線速度快、數量多的瑕疵檢測,而每回檢測或生產都要重新調整參數。而根據她對產業的了解,受限於AOI設備動輒上百萬元台幣起跳,大部分中小型傳統製造業,並不具備雄厚的財力,但他們又想要做自動化檢測,這就是慧演智能的機會。 劉雅雯接著表示,傳統製造業不可能養一個包括AI工程師、資料工程師、雲端架構師、終端架構工程師等專業人才的技術團隊,而慧演智能擅長於軟硬體整合,企業透過BailAI影像檢測平台,就能輕鬆解決產線上的檢測問題。換言之,客戶只需提供影像或樣品,交由慧演智能訓練模型、部署模型及系統整合,即可輕鬆使用AI技術進行產線流程優化及監測。 參加AI新銳選拔賽 組裝行為影像辨識辨識率達9成以上 舉例而言,某家連接器廠商,技術團隊只有1-2位AI工程師。主要解決的問題是,大部分作業員都在產線上,而品管及高階主管在遠端,公司欲透過遠端監控方式掌握產線實際情況。慧演智能透過工業相機拍攝產線畫面,並將AI影像分析傳送到遠端,主管及品管人員可以透過螢幕來觀察產線組裝有無錯誤,如連接器頭跟線路有沒有接好等問題。 慧演智能的AI影像檢測架在微軟的Azure雲端平台上進行作業,也會透過終端設備,如NVIDIA的邊緣運算設備放置於檢測站周邊,透過雲端到終端的整合解決方案,協助傳統製造業提升產線效能與及早發現問題。現階段慧演智能的客群包括航空、電子周邊、連接器及金屬等相關產業。 組裝產線人體行為辨識組裝流程解決方案,準確率達9成以上 為了實證技術深度,慧演智能參加經濟部工業局2021年AI新銳選拔賽活動,為光寶科技提供「組裝產線人體行為辨識組裝流程」解決方案,透過相機及AI影像辨識的方式辨識產線作業員的有效工時及無效工時,也就是透過影像辨識手的姿勢及位置,來判斷作業員的組裝行為,其精準率可達9成以上。 劉雅雯補充說明,由於電子零組件組裝工序較複雜,多以人力為主,無法以機械手臂取代,因此慧演智能在光寶的組裝站裡,用鏡頭拍下作業員組裝的流程,再針對影片進行演算法的訓練、校正,最終訓練出的模型能直接判斷組裝過程是否出現任何錯誤,以改善整體流程。 導入BailAI影像檢測平台 專案開發時間可望縮短至1個月 成立三年多以來,慧演智能累積不少專案經驗,希望能將專案經驗產品化,劉雅雯指出,將於今2022年完成BailAI影像檢測試用版,客戶可依檢測物件的精細度選擇工業相機、視訊相機,甚至於X光來擷取影像,再透過平台做影像自動標記,慧演智能會提供符合場域的AI應用模型,供客戶使用,也可以在雲端終端做推論,便於製造業上線使用。包括金屬產業、工業電腦的金屬機殼、連接器、電子周邊,機械零件,皆可利用平台進行瑕疵檢測及物件辨識。 現階段慧演智能將持續提升技術能力,累積客戶的經驗完成產品化,同時加速AI檢測落地應用,中期將建置終端雲端基礎設施,將企業AI專案開發時間從6-12個月縮短至1個月,降低企業使用時間及使用門檻。長期目標將鎖定台商聚集較多的東南亞市場,將軟硬整合AI解決方案拓展到海外市場,擴大營運規模。

工具機生產線上,組裝的第一步有些微差池,累積公差將造成組裝工作要重來,耗時又費力,導致出貨延遲的情況將衝擊企業聲譽。耐銳利科技公司聚焦智慧製造領域,提供各式AI解決方案,運用機器學習模型傳承老師傅的經驗,在CNC加工機組裝及鑄造過程,利用AI分析產線數據,精準調校各式數據,提升生產精準度 25。 這套AI產線數據分析系統,被耐銳利科技董事長黃常定稱為「師傅40」,就是師傅加上人工智慧的最進化版,用在工具機加工廠,成效斐然。此外,耐銳利科技運用AI瑕疵檢測技術,參加經濟部工業局2021年AI新銳選拔賽活動,協助友達進行面板進階影像瑕疵檢測,正確率達百分之百,引此也榮獲大獎。 協助面板大廠友達解題 瑕疵檢測正確率達百分百 黃常定進一步說明,一般面板在生產時,邊邊角角可能會有缺陷,雖然缺陷肉眼可見,但AOI卻往往難以辨識,導致檢測錯誤率常常超過30,因此,一定要搭配人力進行複檢,才能提高正確率。然而,因應少量多樣的產品需求,在人力不足的情況下,運用AI檢測確實是一個好方法。 成立於2018年的耐銳利科技,在短短三年期間,AI技術就能獲得面板大廠的青睞,實則在CNC工具機領域磨練已久。耐銳利科技總經理唐國維指出,台灣前三大CNC工具機廠希望將AI導入組裝及鑄造兩條產線,其中,在組裝產線上,為保持組裝的準確性,設計組件的每一個零件均會設計公差,在組裝時,每個元件都在公差內,但累績公差最後品檢仍無法通過,必須拆掉重新組裝,不僅耗時耗力,也造成浪費。 「進入產線之後,才知道有些師傅累積很多經驗,很會調校,經過他調校之後,正確率提高不少,速度又快。」反之,新來的工程師沒有經驗,調校時間比較久,也未必能通過品質檢測。 師傅40系統 良率從70大幅提升至95 唐國維接著表示,原本師傅在組裝時所設定的尺寸資料都記錄在紙本上,資料寫完之後就存入倉庫封存,沒有人去研究尺寸之間的關係。耐銳利協助客戶設計師傅40系統,透過人機面板,讓師傅在組裝時直接輸入所測量的尺寸及相關數據。蒐集不同師傅的數據之後,再運用AI演算法分析數據間的關係,做出AI模型,AI模型自動通知作業員要調整到甚麼樣的尺寸,品質檢測就一定會過,如此一來,良率從70大幅提升至95以上。 耐銳利科技公司聚焦於智慧製造領域,提供各式AI解決方案 唐國維補充,組裝一台CNC加工機的主軸要耗費四小時,第一步驟機器量測錯誤,包括震動、溫度,速度等超過範圍,都要拆掉重裝,又花了四小時。拆掉要如何調整,是憑藉師傅的經驗,可能一開始師傅憑經驗做了最好的組法,但錯檢率也達30,組裝又耗了好幾天。透過AI師傅協助,組裝時間只需半天,良率達95以上,省下許多時間及人力。 「運用機器學習的AI模型,綜合所有師傅的經驗蒐集在一起,提供給AI學習。第一步要數位化、第二步則是知識化,這是企業邁入轉型的重要關鍵」,黃常定認為,耐銳利科技是傳統製造業從自動化生產走向邁向數位轉型的重要夥伴。 此外,耐銳利科技另一個聚焦的產業是電梯廠領導品牌的智慧派車系統。所謂派車指的是電梯車廂,即兩部電梯以上就需要群管理。過往派車依據固定法則,如哪一台距離叫車比較近,就自動派那台電梯,一方面沒有考慮到電梯被叫太多次的派車,可能會讓其他人等待更久;另一方面過往的派車模式並無考慮大樓使用特性,造成許多浪費。例如辦公大樓,早上上班、中午休息及下午下班時段各有尖峰時間,透過AI智慧派車可以依據離峰及尖峰時段進行彈性調整,讓派車效率增加、降低等待時間,同時減少電力虛耗。 導入電梯智慧派車 提升運輸效率兼具環保功能 黃常定補充說明,就好比之前的路口紅綠燈號誌,系統已將主幹道、副幹道及小街道的停留及通過秒數寫死,現在則運用智慧紅綠燈,彈性調整等待時間,讓容易壅塞的路段更加順暢。透過AI學習使用情境,在電梯中導入智慧派車系統,會讓輸送效率提升,也更加環保。 除了導入電梯智慧派車外,耐銳利也將AI導入電梯廠的生產出貨智慧排程系統 。電梯廠常常無法準確預估客戶的電梯交期,例如,辦公大樓或賣場等必須完工到一定程度,電梯才能進工地安裝。若受到客戶工期延遲等非預期因素影響,往往造成電梯廠產閒置或是排程不易安排的窘境。 唐國維指出,一般了解客戶端工程進展者可能是業務或工務,但整體而言,出貨正確率大概只有六成左右,也就是說有四成不會如期出貨。因此,若能準確預估出貨時程,就能將產線空出來以因應急單或是其他產品生產需求。AI智慧排程系統將分析過去出貨的資料,氣候、工廠及施工端兩地距離位置、客戶信用等約20-30個參數,放入AI演算法中,可以精準預估到底能不能如期出貨。 黃常定也特別說明,耐銳利科技的機器學習非一般的機器學習,更加入傳統影像處理技術、統計學等各種運算方式,要對領域知識十分熟稔,才能作出好的AI模型,這也是公司競爭力之所在。他強調,一般SaaS平台能處理的資料十分有限,正確率頂多從7成提升至7成5,耐銳利的強項在於AI演算法及機器學習,必須再加上深厚的產業領域知識才能產出好的AI模型。 耐銳利科技從AI專案開始,逐漸深化技術,選擇從困難度高的做起,並累積經驗法則,預計在今2022年開發出SaaS服務,以客戶的需求為出發點,逐步站穩腳跟、成為智慧製造的重要夥伴。 圖左為耐銳利科技總經理唐國維及董事長黃常定右