:::

【111年 解決方案】 AI也懂行銷?!太米科技個人化推薦服務助時尚電商提升3倍轉換率

曾經待過中小型電商,深知電商一人當三個人用的艱辛,太米科技創辦人兼執行長黃子豪及共同創辦人兼營運長李宜庭決定運用AI技術來解決所有電商人的行銷難題。太米科技針對時尚電商的個人化推薦SaaS (軟體即服務),協助中小型電商解決行銷成本不斷上升以及大量數據卻不知道該如何使用的問題,同時提高轉換率及客單價,堪稱時尚電商業的AI最佳助手。

一直以來,如何提升轉換率都是各家電商的重大難題,而像Google以及Facebook都會收集使用者瀏覽紀錄,以便投放使用者感興趣的訊息或是廣告,但一般中小型電商並沒有這樣的資源及人力,來建構資料分析的系統或工具。

公司定位:中小型電商的行銷技術團隊 利用AI 建立自動化行銷

2016年成立的太米科技,創業初期即以成為「中小型電商的行銷技術團隊」為出發點,希望藉由數據分析及個人化推薦服務協助電商解決轉換率低、顧客留存率低的難題。「我和Daniel(指黃子豪)都待過中小型電商,我負責品牌、行銷和設計工作,他包辦後端系統、專案管理及開發上線等,幾乎每個人都身兼數職。」她倆人深知電商業者的痛點,決定幫助中小型電商,開發自動化行銷系統,開發個人化推薦服務的SaaS,協助行銷資源匱乏的中小型電商。

▲透過AI技術分析消費者的購買偏好,給予個人化推薦服務

透過 AI 技術分析每一位消費者的購買偏好,並在後台留存消費者數位足跡,進行數據分析,有別於過往推薦系統以客群分類的方式,太米科技是針對每一個獨立個體的風格喜好來做個人化的商品推薦,以達到精準行銷之目的。 李宜庭強調,太米科技的個人化推薦服務有兩大功能,一、做網站的個人化推薦;二、與email、簡訊及聊天機器人(chatbot)等行銷管道作串接,發送個人化優惠訊息。

當消費者進到官網,根據消費者輪廓與喜好,在每個頁面都可以提供不同商品的推薦,個別商品在不同的網站頁面也有不同的推薦系統,每位消費者進入網站後都能享有個別差異化、不一樣的消費體驗。 太米科技運用深度學習(Deep leaning)的AI技術,將消費者透過各項裝置,分析消費者在線上購物的各種接觸點行為,透過數據化所有消費者使用行為來建構消費者輪廓。

例如,A是消費頻率高的消費者設定為VIP(貴賓),其偏好莫蘭迪色系、蕾絲材質、高領款式等都被記錄下來並標籤化,當A在瀏覽店家網站時,網站便會針對A的這些購買偏好標籤,推薦相應的商品,另外也可以設定客製化優惠以及彈跳視窗,或是透過手機簡訊、email等方式,將客製化訊息傳送給客戶,每位客戶收到的優惠訊息都不盡相同,卻是符合他/她需求的產品。

現階段太米科技客群鎖定包括男女服飾、鞋包配飾、美妝等時尚設計等個人化色彩濃厚的產業,許多客戶在導入個人化推薦服務之後,成效十分顯著。例如,巴黎萊雅 (L'Oreal Paris) 集團旗下美妝品牌植村秀,專營高效膚產品及潮流彩妝品與專業化妝工具等,經導入太米科技的服務後,大幅提升轉換率達3倍之多,營收成長1.8倍,可見成效之優異。

另外,知名服飾業iRoo,在官方網站安裝個人化推薦系統,同時整合Line、Chatbot等數位行銷管道,轉換率也從1.1倍大幅提升至5倍以上,單月營收增加21%。 收費模式採訂閱制,大型企業則可針對其特定的功能需求,以專案收費計價方式。整體客戶使用後的成效,平均至少達成轉換率3倍,以及平均客單價也有2倍的成長。

新客群》繼服飾美妝後 推進導入生活家飾產業

儘管在電商市場整體營業額攀升的趨勢下,讓個人化推薦服務推廣成效亮眼,然而受到疫情影響,非民生必需品的時尚產業業績受到衝擊。太米科技營收比重大部分來自於時尚設計產業,在疫情期間,消費者逛網站只看不買,整體服飾業電商業績下滑3成左右,為了分散營運風險,太米科技自2022年起,將服務客戶領域拓展至風格鮮明、質感類型的家居沙發、生活用品等。

至於為何不將客群拓展至3C產品?李宜庭分析,3C產品著重在性價比及品牌力,例如蘋果電腦有一群忠誠度高的果粉,不容易動搖其購買行為,但服飾、美妝及生活家飾品著重在個人化特色、品味與風格,例如,服飾具備快速、短期的「快時尚」趨勢,產品每周更新速度快,並有季節性特性,3-5天可更新一次做個人化推薦;而美妝,包括彩妝與保養,顧客的忠誠度及回購率高,最適合推薦及主動發送優惠訊息。妝容與穿搭代表個人品味,因此,此兩產業在個人化推薦上可以相輔相成。

「要將企業導入個人化推薦的進程加快,就需要建立SOP」,李宜庭接著說,太米科技藉由將推薦服務導入時尚設計產業的經驗,建構起服務流程(SOP),以利快速複製成功經驗,預計下半年就能快速導入生活家居等產業。

新商模》建立以消費者為核心的新型態行銷模式

現階段太米科技客戶數已突破2000家,代表性客戶包括巴黎萊雅、BLUE WAY等國際知名時尚品牌,未來仍將是場鎖定在海外,朝香港、新加坡及美加等地區發展。 太米科技挾成功將推薦系統導入時尚電商產業的經驗,獲得投資人的青睞,於2021年獲得國內外加速器投資太米科技,募資金額達新台幣7,000萬元,使得人力、規模得以擴充。未來的計畫將整合投資人的資源,建立以消費者為核心的新形態行銷模式。

太米科技共同創辦人兼營運長李宜庭。

▲太米科技共同創辦人兼營運長李宜庭

推薦案例

【解決方案】聲麥無線推出殺手級5G即時AI語音翻譯 降低5成口譯成本
聲麥無線推出殺手級5G即時AI語音翻譯 降低5成口譯成本

聲麥無線以「語音翻譯即服務 VaaS Voice as a Service」,推出領先全球的 5G 即時 AI 語音翻譯服務「VM-Fi聲麥無線」,提供 AI 即時翻譯字幕 TranSpeech 與 AI 多語智慧櫃台 TransDisplay 服務方案,應用於國際展會、觀光產業、零售商場等多元場域的即時轉譯服務,15分鐘快速設置翻譯服務,可大幅降低客戶50口譯服務成本,創造時間與人力成本效益。這項殺手級的應用,是成立三年的聲麥無線所推出的產品,可使得即時口譯成本大幅下降一半,也成功進軍日本市場,廣受消費者青睞。 TranSpeech演講即時字幕與TransDisplay智慧櫃台AI服務方案 對於經營國際論壇及會展的主辦方而言,支付高昂的口譯費用一直是業者難以言喻的共通痛點。根據統計,若想在台灣舉辦一場全英文論壇,包括兩位口譯師、架設口譯亭、現場收發無線電台、控制台、音訊等,總花費至少要10萬以上才能達到現場口譯需求。 成立於2020年9月的聲麥無線,推出「VM-Fi聲麥無線5G即時AI 語音翻譯服務」,在短短2年時間先後於經濟部工業局通訊大賽、創業歸故里競賽、高通台灣創新競賽(QITC)、日本JR 九州創新商業競賽優秀賞、以及獲得全球 CES 2022智慧城市創新獎中脫穎而出,不僅市場好評不斷,更廣受台灣投資人高度關注及日本大型商社方案採用,期許透過智慧城市解決方案,幫助全球人們免於溝通障礙,享受便利的智慧城市生活。 高速5G即時AI語音翻譯 免去昂貴人力設備 口譯成本省5成 集結語言轉譯、數位內容及UX開發等豐厚技術底子的聲麥無線團隊洞察,市場上僅有兩成的高端消費者有能力支付高昂的口譯費用,為滿足其餘八成的市場需求,聲麥無線結合5G高速傳輸及AI語音辨識技術,協助客戶減輕人力、成本負擔,其商務方案可適用於國際展會、觀光服務、商場及線上線下商務會議等多元場域應用。 5G高速AI語音轉譯服務流程 nbsp「不同於傳統口譯師的逐句口譯,過程不僅耗時又沒效率,聽眾也無法流暢傾聽演講內容」,聲麥無線進一步表示,即時AI語音翻譯服務係運用AI演算法進行講師口說和句子分析,由AI判斷台上講者的斷句及主語意思,隨即進行即席翻譯,講師不必等待逐字翻譯的時間,只要把麥克風外接音源線接入VM-Fi 5G即時AI語音翻譯服務,即可暢所欲言,觀眾也能及時閱讀高速的即席翻譯字幕。 智慧5G即時AI語音翻譯,獲京都智慧城市展 2022-2023 連續兩年採用 現階段「VM-Fi聲麥無線5G即時AI語音翻譯服務」主要支援提供中、英、日、韓、西、法、德七種語言的彼此互轉翻譯服務。在疫情期間,線上活動需求大增的狀況下,聲麥無線導入全球首創的即時字幕服務方案,線上外語講師的內容透過轉譯的即時字幕方式顯示在直播的畫面上,讓聽眾即時了解講師的分享內容。操作方式也很簡單,聽眾不需要下載APP,只要打開活動主辦方提供的Youtube和Facebook直播平台即可收看。即時字幕方案不僅為客戶省去惱人的翻譯工作,也讓線上聽眾能安心享受無縫接軌的即時翻譯服務。 即時字幕提供聽眾無縫接軌的即時翻譯服務 另外,聲麥無線在日本推出的TransDisplay「智慧櫃台方案」也深受消費者喜愛。聲麥無線表示,日本老年人口多,觀光客也多,尤其是疫情期間,大多數消費者戴著口罩,用語言溝通往往出現鴻溝,透過智慧櫃台直接將雙方的溝通由語音轉文字顯示在透明隔板上,讓民眾一目了然,成為最貼心的服務。未來,聲麥無線將結合台灣面板廠商,以軟硬整合方式,在日本商場、車站、機場及政府單位等場域,推出語音轉即時翻譯字幕的服務。 智慧櫃台在疫情期間提供民眾安心友善的溝通服務 VM-Fi扎根日本市場 使用者體驗才是王道 面對疫情之後的全球跨境觀光商機爆發,聲麥無線對於業務拓展信心滿滿。聲麥無線表示,VM-Fi 5G AI即時語音翻譯服務在這波疫情考驗下,已淬鍊出卓越產品服務韌性,可彈性化滿足客戶在各種實體或線上服務的需求。聲麥無線預計2025年4月前在日本設立營運總部,積極與關西、京都縣市政府進行對接與義務擴張,待日本市場根基穩固之後,歐盟市場將是下一個重要目標。 聲麥無線參加經濟部工業局AI計畫的AI創立方聯盟募資活動,公司借助資策會、台日中心TJPO和日本產經省外貿協會JETRO等法人協助,積極搶攻日本市場,「日本市場不僅重視數位轉型,更看重使用者體驗UX」,因此,在日本落地成功之後,拓展全球其他市場將水到渠成。 聲麥無線 VM-Fi 應用在日本商場、車站、機場及政府單位。VM-Fi 是一家成立於2020年,充滿熱情和創新精神的新創公司。我們專注於AI語音識別和即時翻譯技術,致力於讓全球人們能夠在國際演講、服務櫃台和溝通中實現高速的同步語音翻譯,徹底打破語言障礙,讓每一個人都能享有資訊平權的權利。VM-Fi 的 AI 服務不僅僅是一項技術革新,更對全球可持續發展做出承諾: A 數位解決方案:我們致力於減少紙張使用,我們減少的每張A4紙,就減少78克的碳排放,以實際數位方案行動推動環境保護。 B 可再生能源決策:我們選擇使用可再生能源的雲服務,並計劃在2025年之前達成使用100使用可再生能源的雲服務為目標,為未來創造更綠色的科技基礎。 C 節水決策:我們承諾使用在2030年前達成水資源正效益的雲服務,確保水資源的補充量超過消耗量,為地球的未來貢獻力量。 D 淨零碳排放決策:使用新的數據中心時,我們將選擇淨零森林砍伐,以保護自然環境。 E 可持續發展目標:通過上述決策,我們積極促進聯合國可持續發展目標(SDGs)4 、7、9、10、11和13的實現,為創造一個更美好的世界而努力。VM-Fi的願景是打造一個無溝通障礙的世界,讓每個人都能自由交流,共同邁向更美好的未來。讓我們攜手並進,為全球的溝通平權和可持續發展作出貢獻;創建更綠色和更美好的未來

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶

這是一張圖片。 This is a picture.
AI智慧健康預防計畫

赫紀有限公司到「台灣兒童發展早期療育協會台東辦事處」舉辦一場AI故事繪本的互動教學,讓兒童、老師、家長一起進入沉浸式體驗教學。 AI生成兒童繪本教材 AI學習平台 nbsp 近年來台灣社會結構的改變,加上在醫院急診的經驗中,我們常常忽略了青少年所表現出的憂鬱症狀,導致孩子們出現自傷甚至是自殺的悲劇。孩子們憂鬱的產生往往很大部分都來自於學業上的表現,家長擔心孩子未來沒有競爭力,因此給予很多壓力在學業表現不佳的孩子身上。 nbspnbsp 一個家庭兩個孩子,有著相同的基因來源,提供相同的成長資源;我們發現第二個小孩通常在課業上的表現都不盡理想,成績不好,上課無法專心,就連看漫畫、打電玩也都無法有耐心與毅力完成,到底差異點在哪裡,我們一直在探索問題是如何發生helliphellip結果發現原因是幼兒時期對學習力出現障礙而沒有發覺。因後天環境因素導致學習力出現遲緩的孩子,八成以上的家長不會承認,也沒有意願帶孩子診療,主要擔心孩子會被貼上遲緩兒的標籤,因此孩子的學習力從幼兒時期就被迫遲遲了,進入國小國中後課業加重,落後幅度更大,家長生氣,孩子力不從心,家庭爭吵增加了,家長擔心孩子學業跟不上,便開始要求孩子要去補習,如果成效不好,花錢得不到好效果,則再次發生家庭革命,這些事件的不良循環都逐漸造成許多孩子在成長過程中累積了很多負面情緒進而影響健康的種種因子。 其實孩子考不好、學不會、不喜歡學習新事物,甚至產生影響健康的心理病症,背後很大的原因其實是幼兒時期學習遲緩累積造成的。六歲前是學習遲緩治療的黃金時期,若能在黃金時期可以發現與協助輔導,孩子們的學習能力將有機會可以被改善與得到10倍成效目前產業的痛點為以下 1缺乏學習力檢測方式市場缺乏樣本數據庫比對 2傳統家長思維迷思輕中度怕被貼標籤延誤治療 3缺乏治療教材教具治療行繪本和系列課程圈乏 本計畫將研發一個國家人才發展的生根輔助系統,利用 AI 技術發展出影響人一生健康的幼兒學習力檢測系統,陪家長共同守護孩子的「健康從學習力檢測」開始,早期發現、早期治療。在未來,台灣所有的孩子,不論出身,都能在幼兒時期將一生健康扎好根,長大後,孩子都能成為台灣國家發展的有用人才。 nbsp 2、nbsp 計畫內提出之AI應用技術與說明: 「兒童語言能力AI分析模型」。用以對「兒童表達一件事情」的「國語使用狀況」的「量化分析」。 情境:幼教師引導孩童敘述繪本內容。AI工具解析孩童描述繪本內容所使用的語句,並透過統計演算法量化分析孩童使用的語句。 分析指標:以「句型」及「語詞」為分析指標。分析內容包括:句型正確性、語詞多樣性、語詞使用數量、語詞使用正確性。 應用:單一孩童與同儕間語言能力分布的比較分析,可提供幼教師對不同孩子提供更細緻的語言能力教學。 使用技術:中文斷詞(中文分詞)技術、中文詞性標記技術、中文句法規則分析演算法、量化分析演算法。 使用工具:中文斷詞工具、中文詞性標記工具。 nbsp 3、nbsp 預期達成之產業價值: nbsp成立學習力檢測與輔助系統,透過治療型繪本與課程與幼兒園合辦學習力養成基地,讓孩子別停留在起跑點,陪家長守護孩子健康,從檢測學習力開始為目標,以強大樣本數據庫為後盾,提供家長早期發現孩子在學習上的延緩,協助孩子找回學習力。 nbsp 4、nbsp 預期達成之產業效益(經濟效益及未來擴散性、帶動性): 透過本計畫,只要協助遲緩孩子學習力能大幅提升,孩子是國家的主人翁,自然可以幫助國家在人才發展上得到看不到但非常實際的潛在影響力。同時,學習力養成基地的目的,就是要幫孩子找回家長,以增加孩子與家長互動的時間,讓孩子可以拋去單純 3C 的單面向互動變成與家長雙面向互動。這將潛在影響被環境耽誤有潛在能力的孩子再次得到機會發揮。