:::

【109年 解決方案】 翻轉你對Chatbot 的印象:進行一場真正有意義的對話

人工智慧(AI)對人類生活的影響力與日俱增,不論是企業、工廠甚至是個人,都開始嚮往能透過機器擁有更加便利的生活方式。不管是電影中出現的虛擬角色,或是自我幻想,都反映了人類對於未來世界的渴望;可以即時回應你的所有需求,更期待能幫你也把一切打理得無微不至。於是,蘋果帶來了「Siri」、亞馬遜出現了「Alexa」,各家大廠紛紛帶著自己的智能助理如約而至。

Talk to anything you want

根據Gartner調查,交談式AI的自然語言處理(Natural Language Processing, NLP)技術已成為所有AI應用技術的前三名,如何應用NLP做到滿足消費者體驗,這是所有交談式AI供應商都在積極鑽研、進步的領域。 儘管人類使用的語言對機器而言是模糊的、非結構化的,但有了NLP的出現,我們可以解析這些大型的非結構化數據中的模式,從而更好地理解其中包含的訊息。亦可透過NLP協助解決商業中的難題,尤其像是會被頻繁問到高度可預測的問題時、或是持續工作性的例常工作等,都隨著機器學習、運算效能的進步,開始導入以AI技術為基底的Chatbot 來完成。 但是對 Chatbot 開發者來說,找出對的應用只是第一步,設計出好的體驗才是讓使用者留下的關鍵因素。一般對Chatbot的印象總是停在刻板的客服印象,更是常常出現一問三不知的現象,甚至只會回答幾種制式的答案,覺得 Chatbot 一點都不聰明,很笨也很不合期待。 雖然關於聊天機器人的使用體驗設計,有許多影響的要素可以鑽研,但是想要提升消費者體驗並從而改觀,就需要更進階的自然語言理解(Natural Language Understanding, NLU)技術,進行語意分析、情緒分析、對話聊天機器人等進階應用,讓Chatbot能成為更聰明、更貼近人心的智能機器人。 亞太智能機器就是台灣少數在做機器智能的公司,他們致力於創造人類更便利的生活,自行研發自然語言理解(Natural Language Understanding,NLU技術),專注於Chatbot機器人的研發應用,創立Opentalk平台;至今成立還不到三年,已是目前全球前五大工業智慧公司「科大迅飛」的台灣唯一技術合作夥伴。

亞太智能打造「多輪對話詢答能力」,賦予Chatbot 理解能力

亞太智能機器透過自行研發的自然語意理解技術,開發出的對話機器人快速建置平台,已具備多輪對話詢答能力,其結合領域知識圖譜,可以讓客服機器人在第一線解決70%-80%的問題,比較複雜及多元的部分,則仍須仰賴人工客服回答。不過,這80%的準確率,已經足以讓客服人員有時間處理更複雜的客戶需求。 此外,多輪對話機器人現階段也可以運用於廠區。客戶在工廠端操作機器設備時出現問題,可以對機器人描述需求與機器的情況,經過多輪對話,機器人可從有限範圍判斷正確問題,結合知識圖譜,有效的判定問題之所在,並且通知技術人員到廠維修,透過機器初步的判斷及回報,情況最快可以在一天之內排除障礙。 對於多輪對話Chatbot 的底層數據架構,必須仰賴介接企業網站或企業資料庫,針對使用者偏好資料、使用者問答資料及使用者 Persona 等進行分類,但除了需要大量的數據資料外,最重要的是透過不斷「餵養」領域知識,才能讓機器人越來越聰明。 另外,亞太智能機器創辦人吳柏翰也認為:「AI學習要以數據為導向,因此,無法用小數據資料就處理大量的對話內容,雖然各種推理的技術正在快速發展,最終靠理解做決策者還是人類。」

「說」出未來無限可能

演著滲透民眾生活相當關鍵的角色。 像是google assistant在2018宣布推出繁體中文版,並積極拓展在台的語音市場,現在開發者已經可以將自己的語音技能上架於Action on Google上供其他使用者使用。 亞太智能機器(APMIC)更是結合了自身的語意理解技術,上架一款名為「公車小幫手」的語音技能,只要跟自己手機或是音箱上的Google助理說「我要跟公車小幫手說話」就可以進入該情境,在分秒必爭的早晨可以省掉打開app輸入文字的麻煩,只要以嘴代手的方式,就可以查詢自己需要的公車動態。 因此在現今眾多語音技術應用可以看出,語音技能的發展需要有高度的NLU技術才能準確判斷使用者的意圖為何。對於NLU技術的研究,Google、Amazon和Microsoft等大廠亦都積極加入研發,可想在未來語音技能的應用發展將會有更多吸睛的新功能,提供更貼心、更聰明的使用感受,讓用戶的生活更加便利。

推薦案例

這是一張圖片。 This is a picture.
智慧工地安防平台

永億智慧工地安防平台示意圖 nbsp 在建築工地施工中,為控制工作場所的安全,實行安全防護措施及制定相關流程成為必要的條件。每位企業主都希望將工業安全風險降到最低,為了降低工安事故的機率,對於個人防護設備 Personal Protective Equipment,PPE及防護措施的檢測尤其重要,永億智慧工地安防平台,採用AI嵌入式系統,不僅能夠檢測工人是否正確佩戴安全帽等,並提供進出工地門禁管理,對工人的身份授權進行驗證。 智慧工地安防平台,亦是政府在推動智慧建築標章環節,其中「智慧工地管理」被列為「維運管理」指標三大項目之一,說明「智慧工地管理」重要性,本解方案依門禁管理、監視器管理、安全管理、環璄監測等面向之,AIOT 解決方案。 功能特色 nbsp

【解決方案】瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞
瑕疵辨識率達百分百 耐銳利科技獲面板大廠青睞

工具機生產線上,組裝的第一步有些微差池,累積公差將造成組裝工作要重來,耗時又費力,導致出貨延遲的情況將衝擊企業聲譽。耐銳利科技公司聚焦智慧製造領域,提供各式AI解決方案,運用機器學習模型傳承老師傅的經驗,在CNC加工機組裝及鑄造過程,利用AI分析產線數據,精準調校各式數據,提升生產精準度 25。 這套AI產線數據分析系統,被耐銳利科技董事長黃常定稱為「師傅40」,就是師傅加上人工智慧的最進化版,用在工具機加工廠,成效斐然。此外,耐銳利科技運用AI瑕疵檢測技術,參加經濟部工業局2021年AI新銳選拔賽活動,協助友達進行面板進階影像瑕疵檢測,正確率達百分之百,引此也榮獲大獎。 協助面板大廠友達解題 瑕疵檢測正確率達百分百 黃常定進一步說明,一般面板在生產時,邊邊角角可能會有缺陷,雖然缺陷肉眼可見,但AOI卻往往難以辨識,導致檢測錯誤率常常超過30,因此,一定要搭配人力進行複檢,才能提高正確率。然而,因應少量多樣的產品需求,在人力不足的情況下,運用AI檢測確實是一個好方法。 成立於2018年的耐銳利科技,在短短三年期間,AI技術就能獲得面板大廠的青睞,實則在CNC工具機領域磨練已久。耐銳利科技總經理唐國維指出,台灣前三大CNC工具機廠希望將AI導入組裝及鑄造兩條產線,其中,在組裝產線上,為保持組裝的準確性,設計組件的每一個零件均會設計公差,在組裝時,每個元件都在公差內,但累績公差最後品檢仍無法通過,必須拆掉重新組裝,不僅耗時耗力,也造成浪費。 「進入產線之後,才知道有些師傅累積很多經驗,很會調校,經過他調校之後,正確率提高不少,速度又快。」反之,新來的工程師沒有經驗,調校時間比較久,也未必能通過品質檢測。 師傅40系統 良率從70大幅提升至95 唐國維接著表示,原本師傅在組裝時所設定的尺寸資料都記錄在紙本上,資料寫完之後就存入倉庫封存,沒有人去研究尺寸之間的關係。耐銳利協助客戶設計師傅40系統,透過人機面板,讓師傅在組裝時直接輸入所測量的尺寸及相關數據。蒐集不同師傅的數據之後,再運用AI演算法分析數據間的關係,做出AI模型,AI模型自動通知作業員要調整到甚麼樣的尺寸,品質檢測就一定會過,如此一來,良率從70大幅提升至95以上。 耐銳利科技公司聚焦於智慧製造領域,提供各式AI解決方案 唐國維補充,組裝一台CNC加工機的主軸要耗費四小時,第一步驟機器量測錯誤,包括震動、溫度,速度等超過範圍,都要拆掉重裝,又花了四小時。拆掉要如何調整,是憑藉師傅的經驗,可能一開始師傅憑經驗做了最好的組法,但錯檢率也達30,組裝又耗了好幾天。透過AI師傅協助,組裝時間只需半天,良率達95以上,省下許多時間及人力。 「運用機器學習的AI模型,綜合所有師傅的經驗蒐集在一起,提供給AI學習。第一步要數位化、第二步則是知識化,這是企業邁入轉型的重要關鍵」,黃常定認為,耐銳利科技是傳統製造業從自動化生產走向邁向數位轉型的重要夥伴。 此外,耐銳利科技另一個聚焦的產業是電梯廠領導品牌的智慧派車系統。所謂派車指的是電梯車廂,即兩部電梯以上就需要群管理。過往派車依據固定法則,如哪一台距離叫車比較近,就自動派那台電梯,一方面沒有考慮到電梯被叫太多次的派車,可能會讓其他人等待更久;另一方面過往的派車模式並無考慮大樓使用特性,造成許多浪費。例如辦公大樓,早上上班、中午休息及下午下班時段各有尖峰時間,透過AI智慧派車可以依據離峰及尖峰時段進行彈性調整,讓派車效率增加、降低等待時間,同時減少電力虛耗。 導入電梯智慧派車 提升運輸效率兼具環保功能 黃常定補充說明,就好比之前的路口紅綠燈號誌,系統已將主幹道、副幹道及小街道的停留及通過秒數寫死,現在則運用智慧紅綠燈,彈性調整等待時間,讓容易壅塞的路段更加順暢。透過AI學習使用情境,在電梯中導入智慧派車系統,會讓輸送效率提升,也更加環保。 除了導入電梯智慧派車外,耐銳利也將AI導入電梯廠的生產出貨智慧排程系統 。電梯廠常常無法準確預估客戶的電梯交期,例如,辦公大樓或賣場等必須完工到一定程度,電梯才能進工地安裝。若受到客戶工期延遲等非預期因素影響,往往造成電梯廠產閒置或是排程不易安排的窘境。 唐國維指出,一般了解客戶端工程進展者可能是業務或工務,但整體而言,出貨正確率大概只有六成左右,也就是說有四成不會如期出貨。因此,若能準確預估出貨時程,就能將產線空出來以因應急單或是其他產品生產需求。AI智慧排程系統將分析過去出貨的資料,氣候、工廠及施工端兩地距離位置、客戶信用等約20-30個參數,放入AI演算法中,可以精準預估到底能不能如期出貨。 黃常定也特別說明,耐銳利科技的機器學習非一般的機器學習,更加入傳統影像處理技術、統計學等各種運算方式,要對領域知識十分熟稔,才能作出好的AI模型,這也是公司競爭力之所在。他強調,一般SaaS平台能處理的資料十分有限,正確率頂多從7成提升至7成5,耐銳利的強項在於AI演算法及機器學習,必須再加上深厚的產業領域知識才能產出好的AI模型。 耐銳利科技從AI專案開始,逐漸深化技術,選擇從困難度高的做起,並累積經驗法則,預計在今2022年開發出SaaS服務,以客戶的需求為出發點,逐步站穩腳跟、成為智慧製造的重要夥伴。 圖左為耐銳利科技總經理唐國維及董事長黃常定右

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶