【109年 解決方案】 翻轉你對Chatbot 的印象:進行一場真正有意義的對話

人工智慧(AI)對人類生活的影響力與日俱增,不論是企業、工廠甚至是個人,都開始嚮往能透過機器擁有更加便利的生活方式。不管是電影中出現的虛擬角色,或是自我幻想,都反映了人類對於未來世界的渴望;可以即時回應你的所有需求,更期待能幫你也把一切打理得無微不至。於是,蘋果帶來了「Siri」、亞馬遜出現了「Alexa」,各家大廠紛紛帶著自己的智能助理如約而至。
Talk to anything you want
根據Gartner調查,交談式AI的自然語言處理(Natural Language Processing, NLP)技術已成為所有AI應用技術的前三名,如何應用NLP做到滿足消費者體驗,這是所有交談式AI供應商都在積極鑽研、進步的領域。 儘管人類使用的語言對機器而言是模糊的、非結構化的,但有了NLP的出現,我們可以解析這些大型的非結構化數據中的模式,從而更好地理解其中包含的訊息。亦可透過NLP協助解決商業中的難題,尤其像是會被頻繁問到高度可預測的問題時、或是持續工作性的例常工作等,都隨著機器學習、運算效能的進步,開始導入以AI技術為基底的Chatbot 來完成。 但是對 Chatbot 開發者來說,找出對的應用只是第一步,設計出好的體驗才是讓使用者留下的關鍵因素。一般對Chatbot的印象總是停在刻板的客服印象,更是常常出現一問三不知的現象,甚至只會回答幾種制式的答案,覺得 Chatbot 一點都不聰明,很笨也很不合期待。 雖然關於聊天機器人的使用體驗設計,有許多影響的要素可以鑽研,但是想要提升消費者體驗並從而改觀,就需要更進階的自然語言理解(Natural Language Understanding, NLU)技術,進行語意分析、情緒分析、對話聊天機器人等進階應用,讓Chatbot能成為更聰明、更貼近人心的智能機器人。 亞太智能機器就是台灣少數在做機器智能的公司,他們致力於創造人類更便利的生活,自行研發自然語言理解(Natural Language Understanding,NLU技術),專注於Chatbot機器人的研發應用,創立Opentalk平台;至今成立還不到三年,已是目前全球前五大工業智慧公司「科大迅飛」的台灣唯一技術合作夥伴。
亞太智能打造「多輪對話詢答能力」,賦予Chatbot 理解能力
亞太智能機器透過自行研發的自然語意理解技術,開發出的對話機器人快速建置平台,已具備多輪對話詢答能力,其結合領域知識圖譜,可以讓客服機器人在第一線解決70%-80%的問題,比較複雜及多元的部分,則仍須仰賴人工客服回答。不過,這80%的準確率,已經足以讓客服人員有時間處理更複雜的客戶需求。 此外,多輪對話機器人現階段也可以運用於廠區。客戶在工廠端操作機器設備時出現問題,可以對機器人描述需求與機器的情況,經過多輪對話,機器人可從有限範圍判斷正確問題,結合知識圖譜,有效的判定問題之所在,並且通知技術人員到廠維修,透過機器初步的判斷及回報,情況最快可以在一天之內排除障礙。 對於多輪對話Chatbot 的底層數據架構,必須仰賴介接企業網站或企業資料庫,針對使用者偏好資料、使用者問答資料及使用者 Persona 等進行分類,但除了需要大量的數據資料外,最重要的是透過不斷「餵養」領域知識,才能讓機器人越來越聰明。 另外,亞太智能機器創辦人吳柏翰也認為:「AI學習要以數據為導向,因此,無法用小數據資料就處理大量的對話內容,雖然各種推理的技術正在快速發展,最終靠理解做決策者還是人類。」
「說」出未來無限可能
演著滲透民眾生活相當關鍵的角色。 像是google assistant在2018宣布推出繁體中文版,並積極拓展在台的語音市場,現在開發者已經可以將自己的語音技能上架於Action on Google上供其他使用者使用。 亞太智能機器(APMIC)更是結合了自身的語意理解技術,上架一款名為「公車小幫手」的語音技能,只要跟自己手機或是音箱上的Google助理說「我要跟公車小幫手說話」就可以進入該情境,在分秒必爭的早晨可以省掉打開app輸入文字的麻煩,只要以嘴代手的方式,就可以查詢自己需要的公車動態。 因此在現今眾多語音技術應用可以看出,語音技能的發展需要有高度的NLU技術才能準確判斷使用者的意圖為何。對於NLU技術的研究,Google、Amazon和Microsoft等大廠亦都積極加入研發,可想在未來語音技能的應用發展將會有更多吸睛的新功能,提供更貼心、更聰明的使用感受,讓用戶的生活更加便利。
推薦案例

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶

近年來,人工智慧 Artificial Intelligence,簡稱 AI 已逐漸改變各行各業的運作模式,不過,絕大部分的工作仍然是由人類完成,AI 則扮演輔助的角色,因而出現了「AI Copilot」一詞,代表「由 AI 驅動的工具或助理」,旨在協助使用者完成各種任務,提高生產力和效率。 AI Copilot 的概念源自於「副駕駛」這個角色,在飛行中,副駕駛協助主駕駛員完成各項任務,確保飛行安全與效率。其實,工業革命的「機器」就開始有 Copilot 的影子,各種機器在不同領域中扮演「Copilot」的角色,輔助人類完成繁重的體力和重複性工作,大幅提升工廠生產效率,推動經濟快速發展。 隨著運算設備的進步、機器學習、深度學習、影像辨識等技術的突破,AI Copilot 的概念逐漸成形。AI Copilot 的發展標誌著從「機器輔助提升到智慧輔助的轉變」。早期的機器人只能完成預設的重複性工作,而現在的 AI Copilot 則能夠學習和適應新的環境與任務,並在實際應用中不斷優化自身表現。這一轉變不僅改變了人機交互的方式,也為各產業帶來了深遠的影響。 AI Copilot 的應用範圍涵蓋了各個行業,包括:金融、醫療、製造、教育、零售hellip等等,無處不在。 AI Copilot 於零售業的應用:AI 影像辨識結帳 在零售業,AI Copilot 的應用已經開始展現具體成果。 以 Viscovery 的 AI 影像辨識結帳系統為例,這套系統即為 AI Copilot 模式的一種,輔助店員加速結帳,或者輔助消費者簡化自助結帳流程。 nbsp 一般的結帳方式需要店員逐一掃描商品條碼,若是無條碼的商品,如:麵包、餐點,則需店員花時間先用肉眼確認品項,再一個個輸入到 POS 結帳系統中。根據一家連鎖麵包店實測,資深店員從「肉眼辨識」到「輸入一盤 6 顆麵包的商品資訊到結帳系統」的過程,就要 22 秒的時間,新進店員需要的時間可能更多。另外,根據一家日本麵包店業者分享,培訓員工認識、熟悉商品需要 1 至 2 個月的時間。 nbsp 現在有了 AI 影像辨識技術,店員可以把「辨識商品」的步驟交給 AI,由 AI 扮演 Copilot 的角色,1 秒內迅速辨識品項,加快結帳,整體節省 50 的結帳時間,優化顧客購物體驗。而培訓員工辨認麵包的時間成本,也能因此有效縮短。 nbsp 即便是帶有條碼的商品,AI 也可以在一秒內快速辨識多個品項,相比逐個掃條碼的方式,效率更高 nbsp 而有 AI 影像辨識「輔助」的自助結帳系統,則能夠讓消費者在沒有店員幫助的情況下,順利完成購物,省去刷條碼或在螢幕上查找品項的麻煩,提升購物體驗,在缺工、找不到店員的時代,也幫助店家降低營運成本。 nbsp AI 快速辨識多件結帳商品只要一秒鐘 圖片來源:Viscovery 近來,致力研發 AI 影像辨識結帳方案的新創在各國嶄露頭角,目前已知最輕量化的解決方案就在台灣,只要在結帳櫃檯安裝一支 Viscovery 的鏡頭與一台搭載 Viscovery AI 影像辨識軟體的平板,即可與店家既有的 POS 結帳系統串接,馬上啟用。 整合方式多元,有隨插即用的作法,也有與店家 POS 整合的 API 串接方案。 Viscovery AI 影像辨識系統可與店家現有的 POS 系統無痛整合 圖片來源:Viscovery AI 影像辨識結帳的導入實例 目前 Viscovery AI 影像辨識系統已導入台灣連鎖烘焙店、新加坡中式麵店、日本仙台百貨公司商辦超商 micormarket、日本麵包店與蛋糕店hellip等等。超過 700 萬筆交易筆數,都是透過這套 AI 系統完成,辨識超過 4000 萬件商品。這些使用案例展示了 Viscovery AI 影像辨識系統在零售行業的廣泛應用,未來將持續深耕、探索零售及餐飲運用 Vision AI 的各種可能。 nbsp Viscovery AI 影像辨識系統已導入日本、新加坡、台灣,使用於麵包店、蛋糕店、餐廳、便利商店等多個場域 圖片來源:Viscovery

赫紀有限公司到「台灣兒童發展早期療育協會台東辦事處」舉辦一場AI故事繪本的互動教學,讓兒童、老師、家長一起進入沉浸式體驗教學。 AI生成兒童繪本教材 AI學習平台 nbsp 近年來台灣社會結構的改變,加上在醫院急診的經驗中,我們常常忽略了青少年所表現出的憂鬱症狀,導致孩子們出現自傷甚至是自殺的悲劇。孩子們憂鬱的產生往往很大部分都來自於學業上的表現,家長擔心孩子未來沒有競爭力,因此給予很多壓力在學業表現不佳的孩子身上。 nbspnbsp 一個家庭兩個孩子,有著相同的基因來源,提供相同的成長資源;我們發現第二個小孩通常在課業上的表現都不盡理想,成績不好,上課無法專心,就連看漫畫、打電玩也都無法有耐心與毅力完成,到底差異點在哪裡,我們一直在探索問題是如何發生helliphellip結果發現原因是幼兒時期對學習力出現障礙而沒有發覺。因後天環境因素導致學習力出現遲緩的孩子,八成以上的家長不會承認,也沒有意願帶孩子診療,主要擔心孩子會被貼上遲緩兒的標籤,因此孩子的學習力從幼兒時期就被迫遲遲了,進入國小國中後課業加重,落後幅度更大,家長生氣,孩子力不從心,家庭爭吵增加了,家長擔心孩子學業跟不上,便開始要求孩子要去補習,如果成效不好,花錢得不到好效果,則再次發生家庭革命,這些事件的不良循環都逐漸造成許多孩子在成長過程中累積了很多負面情緒進而影響健康的種種因子。 其實孩子考不好、學不會、不喜歡學習新事物,甚至產生影響健康的心理病症,背後很大的原因其實是幼兒時期學習遲緩累積造成的。六歲前是學習遲緩治療的黃金時期,若能在黃金時期可以發現與協助輔導,孩子們的學習能力將有機會可以被改善與得到10倍成效目前產業的痛點為以下 1缺乏學習力檢測方式市場缺乏樣本數據庫比對 2傳統家長思維迷思輕中度怕被貼標籤延誤治療 3缺乏治療教材教具治療行繪本和系列課程圈乏 本計畫將研發一個國家人才發展的生根輔助系統,利用 AI 技術發展出影響人一生健康的幼兒學習力檢測系統,陪家長共同守護孩子的「健康從學習力檢測」開始,早期發現、早期治療。在未來,台灣所有的孩子,不論出身,都能在幼兒時期將一生健康扎好根,長大後,孩子都能成為台灣國家發展的有用人才。 nbsp 2、nbsp 計畫內提出之AI應用技術與說明: 「兒童語言能力AI分析模型」。用以對「兒童表達一件事情」的「國語使用狀況」的「量化分析」。 情境:幼教師引導孩童敘述繪本內容。AI工具解析孩童描述繪本內容所使用的語句,並透過統計演算法量化分析孩童使用的語句。 分析指標:以「句型」及「語詞」為分析指標。分析內容包括:句型正確性、語詞多樣性、語詞使用數量、語詞使用正確性。 應用:單一孩童與同儕間語言能力分布的比較分析,可提供幼教師對不同孩子提供更細緻的語言能力教學。 使用技術:中文斷詞(中文分詞)技術、中文詞性標記技術、中文句法規則分析演算法、量化分析演算法。 使用工具:中文斷詞工具、中文詞性標記工具。 nbsp 3、nbsp 預期達成之產業價值: nbsp成立學習力檢測與輔助系統,透過治療型繪本與課程與幼兒園合辦學習力養成基地,讓孩子別停留在起跑點,陪家長守護孩子健康,從檢測學習力開始為目標,以強大樣本數據庫為後盾,提供家長早期發現孩子在學習上的延緩,協助孩子找回學習力。 nbsp 4、nbsp 預期達成之產業效益(經濟效益及未來擴散性、帶動性): 透過本計畫,只要協助遲緩孩子學習力能大幅提升,孩子是國家的主人翁,自然可以幫助國家在人才發展上得到看不到但非常實際的潛在影響力。同時,學習力養成基地的目的,就是要幫孩子找回家長,以增加孩子與家長互動的時間,讓孩子可以拋去單純 3C 的單面向互動變成與家長雙面向互動。這將潛在影響被環境耽誤有潛在能力的孩子再次得到機會發揮。