:::

【109年 解決方案】 雲守護人體骨幹分析技術 準確辨識「人」的影像

因人體骨架上的特徵點多於人臉,Beseye 可先擷取較多的特徵點做辨識,故精準度相較於僅做人臉辨識的廠商高出30%。此外,Besey 更可以深入分析到人的行為,例如跌倒、暴力、逛街等行為。

人體骨幹分析技術 精準度高出30%

交通意外幾乎每天都在發生,其中又以平交道事故最為嚴重,雲守護推出AI影像分析平台,透過各種人工智慧分析「人的行為」,能有效避免交通意外發生,同時也能應用在任何有人在的場域。

Beseye人工智慧影像分析平台以AI深度學習為基礎,可準確辨識「人」的影像。雲守護為專門研發AI安全攝影機分析服務平台的科技公司,提供自動化安全分析與保護,如果應用在店家,還能協助分析了解客群分布,達到節省大量人力監看攝影機的需求與時間成本。

洞悉客流、客群及消費者行為,進行深度數據分析

▲洞悉客流、客群及消費者行為,進行深度數據分析

而這套AI分析系統的最大關鍵,在於採用Beseye提供的「人工智慧影像分析平台」,核心技術為以深度學習為基礎的人體骨幹分析技術(Skeleton-Print Technology),可深入分析人的各種行為,精準度相較於市場上普遍僅做人臉辨識的AI引擎高出30%。

有人的地方就有Beseye守護您

Beseye「人工智慧影像分析平台」主要服務可分成三大類,首先是「人工智慧人員偵測」(AI-based Human Detection),顧名思義當偵測到有入侵者時,系統會自動發出推播通知,使用者不用無時無刻盯著錄影畫面,也能輕鬆掌握場域即時動態;接著是「身份特徵辨識功能」(AI-based Characteristics Analysis),當系統偵測到陌生人會主動發送通知,如果應用在店家,還能利用智慧商用報表功能,得知店內詳細客情與消費行為,讓店家可做出相對應的銷售策略;最後是「人工智慧姿勢與行為辨別」(AI-based Behavior and Posture Analysis),藉由對人體的姿勢分析,了解店裡哪些產品互動率較高,例如觀察顧客在某櫃位前停留時間長,便可判斷商品熱點區域。

當然,Beseye「人工智慧影像分析平台」不光只能應用在商場,幾乎你能想像到的公共場合都能使用,以首段提到的平交道情境來說,只要在路口加裝支援人工智慧分析的監視器材、搭配指定的分析軟體, 能在50公尺內精準識別人體各特徵與動作,當火車接近時,若有人嘗試通過軌道,系統會即時偵測行人年齡、性別與行動狀態,如果是拄著拐杖或坐輪椅導致移動緩慢,系統會顯示風險指數,一旦情況危及,便立刻通知中控中心與站務人員,讓他們能第一時間處理,如此就能避免意外或臥軌自殺率。

偵測交通場域中的危險事件

▲偵測交通場域中的危險事件

若該套人工智慧影像分析應用在醫院或長照中心,透過Beseye獨家研發的人體骨幹分析技術,可偵測是否有長者或病人跌倒,同樣在第一時間通報醫護人員或緊急聯絡人,將意外的發生率降至最低,提供年長者更安全的生活場域。從分析商場消費行為到居家長者照護 利用影像分析拓展多元場域應用方式。

人體於跌倒時的骨幹分析

▲人體於跌倒時的骨幹分析

目前雲守護已與日本東急鐵道公司的平交道安全系統,以及全球前三大手機品牌在全台灣的旗艦店、中華電信與遠傳電信、台灣大型商場等企業合作,採用的是雲守護AI攝影機安全分析與商情分析服務;除了商店、交通與醫院,也能運用在銀行、工廠、學校、家庭等各種場域,只要有人的地方,雲守護就會主動守護,這也是該公司最大宗旨。

推薦案例

【解決方案】讓硬碟裡的音樂重生 愛飛媒平運用AI為影像找到最佳拍檔
讓硬碟裡的音樂重生 愛飛媒平運用AI為影像找到最佳拍檔

一名年輕女孩,孤身在美國洛杉磯,為的是尋一個夢,一個能讓音樂創作者深埋在硬碟中的創作音樂重新找到知音的夢helliphellip。 愛飛媒平創辦人李姿慧,理工科出身,心中卻卻深埋音樂人的強大基因,為了協助全球音樂人創作音樂能找到能配對成功的「最佳夥伴」,她創立愛飛媒平公司,提供一站式AI影像音樂媒合平台AV Mapping,協助影像創作者可以快速找到擁有版權的原創音樂。 一站式AI影像音樂媒合解決方案,為音樂創作者找到創新商機 一般來說,以往影像創作者要進行影像配樂,從作詞曲、配樂、找版權,通常需要花上兩周時間,透過AV Mapping影像音樂媒合平台,10 秒鐘立即配對到適合的音樂,音樂人也可以將創作再行銷取得分潤營利,創造三贏局面。此一嶄新、去中心化的營運模式,也獲得已故台灣音樂大師-李泰祥傳人的青睞,在平台上可重溫那一段讓音樂創作恣意飛翔的時光。 李姿慧從小練鋼琴、參加合唱團及管樂團,並自己創作音樂,大學雖然念的是理工科系-成功大學測量及空間資訊學系,但從大三開始,即加入影像團隊從事配樂,並赴南藝大應用音樂系旁聽。大學畢業後,李姿慧決定順從心裡的聲音,當音樂的尋夢人。 愛飛媒平提供一站式AI影像音樂媒合解決方案 愛飛媒平提供一站式AI影像音樂媒合解決方案,主要係藉由人工智慧的影像辨識和音樂分析,影像創作者在平台上可自行搜尋、配對合適的音樂,透過系統可將配樂的時程從8小時縮短至幾秒鐘,大幅縮短近2,000倍。 李姿慧表示,傳統影像配樂工程除了創造合適配樂,還須將大量時間成本投注在溝通及搜尋上,包括後續的編曲、錄製等後製處理和音樂授權更是耗時耗力,有了AI的協助,創作者能將所有心力花在創作上,不必擔心找不到適合音樂,或是音樂版權遭盜用的困境。 虛實整合行銷,從交易到簽約一鍵完成 目前愛飛媒平的音樂資料庫共有6萬首曲目,種類超過60種,涵蓋歐美及亞洲等世界各地音樂,包含流行、EDM、搖滾、愛爾蘭音樂等。愛飛媒平獨創的去中心化概念更大幅保障音樂人權益,在平台上的音樂人可自行訂價並追蹤交易流程,達到公開透明、去中心化的特性。目前平台上包括影像及音樂創作者共有7,000多位,音樂創作者在平台上交易成功,可分潤4成以上,最高達到5成。雙方在平台上交易並完成簽約,手續十分簡便。 AVMapping共有14種AI模型,輕鬆找到速配音樂 李姿慧表示,AI影像音樂媒合解決方案共有14種AI模型,其作法是拆解所有元素之後,透過影像辨識與文字辨識,做音樂分析,再運用機器學習演算法大量訓練,將影像及音樂的特徵列出,即能快速媒合出合適影像情境、氛圍、節奏的配樂。 除了線上媒合交易外,愛飛媒平也舉辦實體音樂會活動,邀集音樂及影像創作者參與,活動的內容環繞在AI影像配樂的展示,現場運用導演一段影片讓音樂創作者PK配樂;或是拿出示範影片,由AI進行配對,只需耗費端端10秒鐘,AI配對的影像與音樂在情緒及氛圍上都十分到位,讓現場參與者嘖嘖稱奇。 三年研發獲紅點設計大獎,以科技支持音樂藝術發展 愛飛媒平花了三年的研發,平台於2021年8月正式上線,2022年元月份在美國拉斯維加斯參加CES活動,引起在場記者高度關注,共獲得超過上百家的媒體報導,使得一個月使用次數就超過千倍,吸引7,000位影像、音樂創作業者加入媒合平台,據統計,先階段美國與台灣媒合交易比重各半。 李姿慧表示,傳統音樂的授權方式十分複雜,包括著作類型、著作財產權種類等,要取得一首歌曲的授權,必須經過詞曲經紀公司、集管團體、製作公司、唱片公司,甚至是作曲、作詞者,十分繁瑣,音樂人也並不一定能得到分潤收入。透過AI影像音樂媒合平台,所有交易合約在線上完成,音樂創作者能獲得利潤,創作熱情不斷被激勵。 三步驟協助影像創作者輕鬆完成配樂工作 值得一提的是,目前NFT(Non-fungible token,又稱為非同質化代幣)在藝術及文化市場大行其道,影像音樂領域導入的可能性如何李姿慧表示,目前以太坊的交易手續費(gas fee)居高不下,加上她在洛杉磯參加多次聚會得到的結論,目前NFT接受度仍在醞釀中,然而,愛飛媒平仍看好NFT未來趨勢,在可預見的未來,仍會將相關技術導入AV Mapping平台,提供更多元化的交易方式。 為了快速擴充海外市場,李姿慧在舊金山不斷尋求國際策略性投資人挹注資金。同時,由於美國洛杉磯疫情控制得宜,產業逐漸復甦中,李姿慧也參加許多線下創作聚會。愛飛媒平希望成為連接影像與音樂的橋樑,在國際市場上導入知名的使用者案例,讓更多創作者看到平台的威力。 愛飛媒平也頻傳捷報,繼榮獲DSA數位廣告奇點銀獎、美國在臺協會與META合辦的AWE女性創業最佳潛力獎之後,李姿慧創辦的一站式AI影像音樂媒合平台AV Mapping也於2020年再度獲得德國紅點Read Dot Award設計大獎設計概念Design Concept的最佳設計獎Best of the best,希望持續以科技立足、以藝術為養分,支持音樂創作者創作出更好的作品。 愛飛媒平創辦人李姿慧榮獲多項國際大獎,是深具潛力的女性創業家

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶

【解決方案】AI電眼取代人眼 慧演智能運用AI幫製造業做品管
AI電眼取代人眼 慧演智能運用AI幫製造業做品管

因應製造業少量多樣的客戶需求,亟待可以找到從雲端到終端的AI解決方案。慧演智能提供軟硬整合解決方案-BailAI影像檢測解決方案,來協助傳統製造業提升製程效率及產品品質,達到轉型的初步目標。 政府宣示2017年為台灣「AI元年」之後,台灣AI新創公司如春筍般林立,成立於2018年的慧演智能即鎖定智慧製造,提供AI影像分析與流程優化的平台,以深度學習的方式檢測產品的瑕疵和組裝的步驟異常,協助企業建置從終端到雲端的基礎設施,讓工廠生產端可以自動化監控,以提升製程的效率和品質。 熟悉產線品管流程 以AI影像檢測作為創業主軸 慧演智能創辦人暨執行長劉雅雯年紀輕輕,在大學畢業之後即進入製造業,在硬碟零件的塑膠射出製程擔任品管職務,「當時已經在產線上,對於生產機台的產線流程相當熟悉」,她之後轉換跑道擔任行銷企劃、接著又擔任過AI產品經理,在時機成熟之後,劉雅雯決定創業,以製造業的AI影像辨識作為創業主軸。 「企業的困難在於缺乏AI開發團隊,即使有了AI團隊,開發專案要花很多時間,至少6-12個月」深諳市場痛點的劉雅雯表示,平台要解決的問題是提供傳統製造業不需要程式開發背景的員工,也可以自行打造AI模型的平台,從遠端協助產線的故障排除及後續的系統維護作業,來幫助企業節省開發時間及人力成本。 BailAI影像檢測平台使用場景 面對市場上提供AI影像辨識的競爭對手非常多,慧演智能的技術優勢何在劉雅雯表示,現階段許多企業備有AOI光學檢測設備,但AOI光學檢測在應用上的瓶頸是,只能用於產線速度快、數量多的瑕疵檢測,而每回檢測或生產都要重新調整參數。而根據她對產業的了解,受限於AOI設備動輒上百萬元台幣起跳,大部分中小型傳統製造業,並不具備雄厚的財力,但他們又想要做自動化檢測,這就是慧演智能的機會。 劉雅雯接著表示,傳統製造業不可能養一個包括AI工程師、資料工程師、雲端架構師、終端架構工程師等專業人才的技術團隊,而慧演智能擅長於軟硬體整合,企業透過BailAI影像檢測平台,就能輕鬆解決產線上的檢測問題。換言之,客戶只需提供影像或樣品,交由慧演智能訓練模型、部署模型及系統整合,即可輕鬆使用AI技術進行產線流程優化及監測。 參加AI新銳選拔賽 組裝行為影像辨識辨識率達9成以上 舉例而言,某家連接器廠商,技術團隊只有1-2位AI工程師。主要解決的問題是,大部分作業員都在產線上,而品管及高階主管在遠端,公司欲透過遠端監控方式掌握產線實際情況。慧演智能透過工業相機拍攝產線畫面,並將AI影像分析傳送到遠端,主管及品管人員可以透過螢幕來觀察產線組裝有無錯誤,如連接器頭跟線路有沒有接好等問題。 慧演智能的AI影像檢測架在微軟的Azure雲端平台上進行作業,也會透過終端設備,如NVIDIA的邊緣運算設備放置於檢測站周邊,透過雲端到終端的整合解決方案,協助傳統製造業提升產線效能與及早發現問題。現階段慧演智能的客群包括航空、電子周邊、連接器及金屬等相關產業。 組裝產線人體行為辨識組裝流程解決方案,準確率達9成以上 為了實證技術深度,慧演智能參加經濟部工業局2021年AI新銳選拔賽活動,為光寶科技提供「組裝產線人體行為辨識組裝流程」解決方案,透過相機及AI影像辨識的方式辨識產線作業員的有效工時及無效工時,也就是透過影像辨識手的姿勢及位置,來判斷作業員的組裝行為,其精準率可達9成以上。 劉雅雯補充說明,由於電子零組件組裝工序較複雜,多以人力為主,無法以機械手臂取代,因此慧演智能在光寶的組裝站裡,用鏡頭拍下作業員組裝的流程,再針對影片進行演算法的訓練、校正,最終訓練出的模型能直接判斷組裝過程是否出現任何錯誤,以改善整體流程。 導入BailAI影像檢測平台 專案開發時間可望縮短至1個月 成立三年多以來,慧演智能累積不少專案經驗,希望能將專案經驗產品化,劉雅雯指出,將於今2022年完成BailAI影像檢測試用版,客戶可依檢測物件的精細度選擇工業相機、視訊相機,甚至於X光來擷取影像,再透過平台做影像自動標記,慧演智能會提供符合場域的AI應用模型,供客戶使用,也可以在雲端終端做推論,便於製造業上線使用。包括金屬產業、工業電腦的金屬機殼、連接器、電子周邊,機械零件,皆可利用平台進行瑕疵檢測及物件辨識。 現階段慧演智能將持續提升技術能力,累積客戶的經驗完成產品化,同時加速AI檢測落地應用,中期將建置終端雲端基礎設施,將企業AI專案開發時間從6-12個月縮短至1個月,降低企業使用時間及使用門檻。長期目標將鎖定台商聚集較多的東南亞市場,將軟硬整合AI解決方案拓展到海外市場,擴大營運規模。