Special Cases

12
2020.3
【2020 Application Example】 Peeking into a Baozi to See How AI Reduces Scrap Rates by 50% and Boosts Production Efficiency by 60% for Frozen Foods

From production line to dining table, who oversees the hygiene management of what we eat In recent years, there has been a continuous stream of news reports concerning food safety, such as repackaging expired goods, and poisoning incidents at Hong Rui Zhen It's clear that people are increasingly concerned about the hygiene of their food However, due to various quality control methods in food processing, there are inherent risks The World Health Organization WHO has pointed out that unsafe food and water cause physical harm to 2 million people each year Hence, international markets demand that food processing companies must establish a traceability system for products This is why major domestic food processors also aim to set up a production traceability system to quickly trace back to problematic raw materials and initiate recall and destruction of problematic food Visible assurance, implementing production transparency A major domestic food manufacturer producing frozen food and instant meals has expanded its market presence to North America, New Zealand, Japan, etc They are also at the forefront in promoting food management domestically, having obtained certifications such as HACCP, ISO22000, ISO14001 Since food production is labor-intensive, it is prone to quality impacts caused by worker fatigue Additionally, the production lines often have unclear records of production quantities, processes, and timing This obscurity in traceability makes it difficult to track production information when defects occur, leading to food safety management gaps that result in the scrapping of entire batches To address this, the Production Development Center at National Sun Yat-sen University utilized its advisory resources to help the food manufacturer tackle food safety management challenges, planning the use of AI technology to collect production data and establish anti-fraud and traceability for food production Intelligent manufacturing boosts food safety Although the level of automation is not high in the processing of bakery products, the food plant in this case is keen to enhance the automation of its production lines and introduce smart manufacturing For businesses, a traceability system not only helps establish brand image and increase product and brand value, but also gives consumers peace of mind due to the transparency of production lines Therefore, the Production Development Center at National Sun Yat-sen University matched AI technology service providers, Hong Ge Technology, in the first phase to plan the introduction of data collection devices to link food work orders information, reducing human operational omissions and capturing real-time production information through dashboards to ensure the consistency of production stage information potentially affected by human factors Schematic for intelligent production line planning The second phase involves using deep learning during the dough fermentation stage to calculate size and volume, analyze the relationship between temperature, humidity, fermentation time, and product volume, and assess whether to introduce AOI foreign object detection after freezing as a second quality control step Schematic of AI-integrated quality control for finished products Food processing ID card, launching the AI-era of food safety tracing In Taiwan, the understanding and acceptance of production history by consumers is gradually improving From the supply of raw materials, processing, production, to distribution and sales, it is necessary to have complete control and provide transparent information Publicly disclosing the production history not only increases trust between enterprises and consumers, but also aligns Taiwan's food safety environment with international standards In 2020, the Production Development Center at National Sun Yat-sen University will assist enterprises with the adoption of advanced AI technology, documenting the entire data process from industry to dining table and supervising food production processes to successfully implement product tracing, prevention of adulteration, and the establishment of high standards for products, thus advancing food processing products to international standards「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

2020-03-12
【2021 Application Example】 Massive Digital Engineering AOI Intelligent Robotic Arm Inspection System Significantly Improves Defect Detection Accuracy

Taiwan is known as a manufacturing powerhouse, yet quality defect detection has always been a chronic sore point in production lines While AOI equipment is available to assist, most use fixed machinery which are limited by angles, resulting in less precise diagnostics and high false positive rates Massive Digital Engineering introduced an AOI intelligent robotic arm detection system that effectively reduces false positives and increases the accuracy of defect detection Generally, the yield rate of products affects the costs for enterprises and the return rate for customers The quality defect detection process in the manufacturing industry often necessitates a substantial amount of quality inspection labor Although there is AOI equipment to assist, these tools are mostly fixed detection machines Fixed cameras are easily limited by angles, resulting in less precise diagnostics and high false positive rates Thus, personnel need to re-screen and inspect afterwards, often manually visual inspection misses defects on average about 5, and can be as high as 20 Three major pain points in manufacturing quality detection Robotic Arm AOI with dynamic multi-angle inspection helps to solve these issues According to the practical understanding by Massive Digital Engineering, there are three main pain points in detecting product quality within the manufacturing industry Pain point one, manual inspection of product quality is prone to errors Currently, the manufacturing industry largely relies on human labor to inspect product appearance, but human judgment often entails errors, such as surface scratches, color differences, solder appearance, etc The error rate in defect judgment is high, and can only be inspected at the finished product stage, often leading to whole batch rejections and high costs in labor and production Pain point two, inability to quantify and record data from quality inspections Traditional manual inspections do not maintain inspection data, which makes it difficult to assign responsibility when quality disputes occur Moreover, high-end contract manufacturing orders from overseas brands often require traceability and corresponding defect records, which traditional human inspection methods struggle to meet Pain point three, limitations of traditional AOI visual inspection systems Current manufacturing uses AOI visual inspection systems, which due to the limitations of visual software technology, employ fixed cameras, fixed lighting, and single-angle operations This method may handle flat or linear-shaped products like rectangular or square items at a single inspection point However, it is more challenging to implement for products with complex shapes eg, irregular automotive parts, requiring multi-point and multi-degree inspections Massive Digital Engineering developed an AOI intelligent robotic arm detection system, effectively improving the accuracy of defect detection To address the pain points in quality inspection in manufacturing, Massive Digital Engineering initiated the concept of developing a multi-angle, movable inspection device, starting with the combination of two representative technologies in factory automation - robotic arms and machine vision By integrating robotic arms with AOI for dynamic multi-angle AI real-time quality inspection, the limitations of fixed inspection systems are addressed, and visual inspection techniques are enhanced by leveraging artificial intelligence, further elevating the sampling of images from flat to multi-dimensional and multi-angular Selected the automotive industry as the real-world testing ground to quickly respond to customer needs The AOI intelligent robotic arm detection system, utilizing AI technology including unsupervised learning, supervised learning, and semi-supervised learning, allows operators to use unsupervised deep learning techniques to learn about good products even when initial samples are incomplete or there are no defective samples, applying it in the visual inspection of automatic welding of car trusses This can solve issues of limited angles with fixed machinery before implementation, less precise diagnostics, and high false positive rates Automotive components are high in unit price and demand a stricter defect detection accuracy In industries that have adopted AI services, the automotive manufacturing sector was chosen as the real-world testing ground Massive Digital Engineering states that the automotive industry mainly consists of related component manufacturers and components typically have a higher unit price, hence requiring more in terms of quality inspection and yield rates, and demanding stricter accuracy Therefore, the automotive sector was chosen as the area for introduction By using a robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection, not only can the defect quality error rate of automotive components be improved, but the fixed-point AOI optical inspection can be enhanced to meet the measurement needs of most industries and finally, establishing a third-party system platform to build an integrated monitoring system platform, enabling immediate response and action when issues arise This system allows for recording and storing important data of products leaving the factory, serving as a basis for future digital production lines and virtual production At the same time, in the event of defects, it can immediately connect to Massive's MES monitoring system, quickly responding to the relevant manufacturing decision-making department, subsequently utilizing ERP systems for project management and reviews, effectively improving production efficiency and reducing production costs Helps to reduce communication costs and aims to become an industry standard In terms of industry integration, it provides a foundational standard for data continuity among upstream and downstream businesses, reducing communication costs within the supply chain Through certification of the contract manufacturers and brand owners, there is a chance to become the industry standard configuration Through the data database established by this project, operators can further optimize their supply chain management solutions using big data analysis Data Analysis, based on data, establish forecast planning, and utilizing technology to link upstream and downstream data of the supply chain, accurately controlling product quality In the future, when interfacing with European, American, and Japanese markets, which demand highly fine-tuned orders, operators can respond and integrate the industry supply chain Supply Chain more swiftly Ultimately, through the benchmark demonstration industry's field verification, such as with the automotive component manufacturing industry used as the benchmark demonstration field, by implementing the robotic arm combined with AI for dynamic multi-angle AOI visual real-time quality inspection system project, the supply chain connection between automotive contract manufacturers and OEMs can be optimized, becoming the industry standard Further seeking more AI teams to join the cross-industry development on the field collaboration platform, driving the overall ecosystem combining AI innovation with field application Self-driving vehicle developed by Massive Digital Engineering「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

2021-11-03
【2020 Application Example】 Intelligent Prescription Recognition: A Helpful Tool for Community Pharmacy Pharmacists

AI is thriving in healthcare services, where pharmacists in community pharmacies are essential for providing drug knowledge and pharmaceutical services However, these pharmacists often spend much time manually processing prescription entries into systems, which takes away from the time they could spend on drug education, medication effectiveness tracking, and other professional services How can AI help community pharmacies to support pharmacists Tedious, time-consuming, and repetitive tasks, and AI solutions Pharmacy operations are under threat from new market dynamics and limited profit-making modes, making digital upgrades challenging for single-pharmacist community pharmacies Pharmacists, taking on multiple roles to understand the health levels of community residents, face tedious, time-consuming, and highly repetitive tasks that hinder the quality of service and make it difficult to respond to customers non-stop all year round Smart Pharmacist Assistant Service Platform Enabled by Jiankangli Technology's smart pharmacist assistant service platform's system architecture, paired with the mobile application 'Smart Good Doctor' and the backend system 'Smart Good Pharmacist', along with the integration of external development feature resources 'OCR Prescription Recognition' and 'RPA Process Automation Training Module RPA library' Primarily applied in clinics and pharmacies at the primary healthcare level, this aims to solve various operational challenges and pain points It includes using digital technology to improve work efficiency, bridging the gap between the public and medical institutions, enhancing the medical relationship, achieving better operational and manpower benefits Additionally, it enhances medication safety for the public and improves their knowledge on medications, while also reducing the daily burden on pharmacists in pharmaceutical services Smart Pharmacist Assistant Project In the current stage, the Institute for Information Industry's team is guiding the integration of pharmacy information system vendors with AI startups, focusing on the development of intelligent prescription image recognition technologies, along with drug image recognition and smart drug scheduling reminder technologies as key research areas This has led to the implementation of practical deployments in 12 community pharmacies in Greater Taipei With the help of the Taiwan Young Pharmacists Association in promoting these technologies, over 100 community pharmacy proprietors have expressed interest in adopting such technologies Once the integration of these service platform systems is complete, it will become a model for promoting AI services in Taiwan's community pharmacy pharmaceutical services「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

2020-03-20
【2020 Application Example】 AI Bread Recognition System, machine scans, and the price is instantly calculated for you!

A brilliant idea transforming AI facial recognition technology As artificial intelligence develops, more and more industries are embracing AI technology, even subtly entering into people's lives As most bakeries sell freshly made bread and pastries, which typically do not have barcodes, they rely on cashiers to visually identify each item and enter the type and price of the bread Thus, inspired by AI facial recognition technology, if such artificial intelligence could identify hundreds of types of bread, it could enhance checkout efficiency Diverse handmade breads delight customers but challenge clerks A local bakery has over 100 types of bread, regularly updating or adding new products, offering customers a variety of choices this poses a challenge for cashiers It takes two months to train a cashier, but even after they start, there's still a 5 to 10 error rate due to bread recognition mistakes each month, especially during peak checkout times after work, causing bottlenecks and further errors due to the stress on cashiers The difficulty in training cashiers and the lack of precision in the checkout process have long troubled businesses When baking meets artificial intelligence, it sparks a marvelous retail experience In typical bakeries, bread is sold 'naked' immediately after baking and then 'packaged' when it cools to room temperature Both methods require cashiers to recognize and remember the prices and undergo two months of training before they can work the cash register Even then, there is still a 5 to 10 error rate each month My Dee Bakery, with its extensive range of over 100 bread types, poses a significant challenge for cashiers Due to Yun Kui Technology Co, Ltd's expertise in developing iPad POS systems, which are designed to be simple, convenient, and easy to use, they allow businesses to check out efficiently and accurately Therefore, integrating the existing POS system with AI image recognition capabilities enables businesses to carry out transactions more efficiently and precisely AI bread recognition model operational schematic Image provided by Yun Kui Technology The execution can be simplified into eight steps, which include 1 Data collection Take bread image data at bakeries 2 Image annotation The image data is handed over to Mu Kesi Co, Ltd for manual annotation 3 AI modeling and training Managed by Mu Kesi, who adjusts AI models and training 4 iPad POS adjustment Simultaneous adjustments of the UI interface on the POS side and backend integration with the AI model 5 Start testing Once Mu Kesi reaches over 95 recognition accuracy with current data, formal integration testing begins 6 Real scene testing Move to the bakery to gather data and verify the correct recognition rates 7 Planning real scene application accessories When recognition accuracy exceeds 98, design accessories for on-site checkout, such as remote cameras and projection light sources 8 Official Application Integration with electronic receipts goes live POS machine AI bread recognition checkout process Start recognition - Recognition complete - Checkout - Confirm checkout, takes only 3 seconds Image provided by Yun Kui Technology AI bread recognition system, making multitasking easy After adding AI capabilities, not only can it save upfront training time and costs for bakery cashiers and reduce costs from recognition errors, but it can also speed up the checkout process and efficiency, increasing customer satisfaction This can later be promoted to various retail industries, expanding the new map of smart retail Before and after comparison chart of the bread checkout process with AI valuation Image provided by Yun Kui Technology「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

2020-05-21

Records of Application Example

【導入案例】智慧農漁業數位分身:一個高效率、永續經營的農漁業升級解決方案。養殖漁業如何靠著稱為「數位分身」的AI 技術達成三倍產量
【2019 Application Example】 Smart agriculture and fisheries digital twin: A highly efficient and sustainable agriculture and fisheries upgrade solution. How did the AI technology called "digital twin" triple the output of aquaculture?

Relying on nine types of sensors to detect water quality, while monitoring the growth of the farmed species and fishermen's behavioral decisions, the artificial intelligence AI solution "Smart Agriculture and Fisheries Digital Twin" can significantly increase production by 300 The ldquoHappy Harvestrdquo - style high-tech integrated solution allows novices to get started quickly It significantly reduces the reliance of agriculture and fisheries on experience, and makes it more appealing for young people to return to their hometowns to work in agriculture and fisheries There was a time when Facebook games were just starting to become popular, and everyone could be called a farmer due to the popular game ldquoHappy Harvestrdquo Office workers took out their mobile phones one by one during their lunch breaks and started living the life of a happy farmer life on their mobile phones Some people were naughty, secretly went on Facebook during work hours to steal the harvest from their colleagues The game was so therapeutic that some people actually went into the fields to become farmers during the holidays If I said that "Happy Harvest" really exists, would you believe me THE "Digital Twin" -"Smart Greenhouse" and "Smart Farm" solutions developed by the Innovative DigiTech-Enabled Applications amp Service Institute IDEAS Institute for Information Technology III are "Happy Harvest" and "Happy Fish Dream Aquarium" in real life Here, nine sensors based on IoT will continuously monitor the "facility factors" of the cropaquaculture growth environment, such as water quality, and upload them to the cloud through the control box The AI robot in the cloud will continue to simulate a digital twin in the system, receiving "facility factors" such as water temperature and dissolved oxygen, and continuously collecting "growth factors" for the growth status of cropsfarmed species A simulated "digital twin" of the fisherman is created in the cloud system, and the AI robot will also calculate appropriate "behavioral decisions" based on the successful strategies of past fishermen When the oxygen content is low and the water temperature exceeds the standard, AI will suggest you to make behavioral decisions, such as turning on the water wheel, turning on the aerator, or using medication Fishermen use their own experience or knowledge to decide whether to follow the suggestion Afterwards, the system will compare the results of the decision, and fishermen can also judge based on the results whether the decision made by a real person is better than the behavioral decision made by the ldquodigital twinrdquoIn addition, the digital twin AI of smart agriculture operates in the background around the clock, silently recording and analyzing the corresponding "behavioral decisions" of fishermen in response to various "facility factors" and "growth factors" in smart farms Decision-making", slowly establishing the best solution model for the farming strategies Slowly, AI silently learns these "tacit knowledge" from fishermen like a little apprentice at their side, so that this knowledge will not be lost when the fishermen retireMoreover, this technology can not only be used to "farm fish," but also "farm vegetables" These optimized farming models can become a precious database Even novices who have just entered the industry can skip the process of exploration and directly become a master The greatest challenges currently faced are insufficient manpower, aging population, loss of experience, and high cost of new technologies Taiwan is famous for its agricultural technologies and farming technologies However, small farmers generally have a shortage of manpower and aging workers Digital transformation is imperative The cost of new technologies is too high for 80 of small farmers and fishermen Since there are too many uncertainties in environmental factors, such as climate change, and water quality changes, they are all highly dependent on experience Therefore, the most severe challenge comes from farmers and fishermen retiring before young farmers and fishermen can take over, and many years of experience are lost because they cannot be passed on Smart agriculture and fisheries digital twin allow continuous optimization without downtime "Digital twin" is an emerging technology that combines AI and HI craftsman wisdom, and was rated by Gartner as one of the top ten key technologies for the future for three consecutive years The Department of Industrial Technology, Ministry of Economic Affairs began to engage in RampD of digital twin in 2016 It believes that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning In the field of aquaculture, the "digital twin" of AIoT Artificial Internet of Things for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen Using the analysis of "facility factors" constructed from different types of water quality data and ldquogrowth factorsrdquo such as fish and shrimp images and disease symptom images, as well as the "behavioral decisions" of fishermen, to train AI can produce optimized models for water quality management, aquatic product growth management, and aquatic disease managementThe "digital twin" of AIoT for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen These AI management models are combined to create a smart farming solution with high survival rate and high feed conversion rate The entire farming process has digital monitoring data and quality that can be analyzed Traceability can reach the initial stage of farming, greatly improving the quality, value, and output of aquatic products Despite promising prospects, there are still many challenges The III IDEAS first become involved in ldquodigital twinrdquo due to a forward-looking technology project supported by the Department of Industrial Technology, Ministry of Economic Affairs in 2018 At that time, the Department of Industrial Technology believed that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan subsequently supported the application of "digital twin" in smart agriculture "The application of digital twin technology in agriculture helps small farmers digitally accumulate experience, and improves their agricultural skills through the interaction of group experience and AI, resolving the greatest challenge of intelligent agriculturerdquo Intelligent agriculture digital twin technology is expected to increase production efficiency by 30 after commercialization and is quite promising Team leader Qiu Jingming "The behavioral decisions made by powerful fishermen are three times better than those of ordinary fishermen in terms of results" nbsp Digital Twin Aqua-Solution After working with technology-based aquaculture companies and gaining support from an industry project of the Industrial Development Bureau, Ministry of Economic Affairs, III IDEAS applied digital twin technology in the field of "smart fish farms" The field application team responsible for aquaculture pointed out ldquoIn fish farms, fishermen often make different behavioral decisions when facing various environmental changes The behavioral decisions made by experienced fishermen are three times better than ordinary fishermen in terms of results For example, the survival rate of white shrimps is generally about 10, but some fishermen can achieve a yield of up to 30 This reduced production costs and tripled profitsDigital twin technology can pass on the tacit knowledge of these experts and ultimately upgrade the entire industry" The "digital twin" is composed of 9 sensors, fish images, and fishermen's behavioral decisions 9 sensors, constantly monitoring "facility factors" such as water quality IDEAS uses nine sensors to monitor water quality, nbspincluding dissolved oxygen, water temperature, pH, salinity, turbidity, ammonia nitrogen, nitrate, chlorophyll a, and ORP Oxidation-Reduction Potential, in order to obtain the environmental data of various farms These factors are also known as ldquofacility factorsrdquo In addition, fishermen will regularly take fish and shrimp out of the pond, or use submersible cameras to take pictures of farmed species underwater This is used to determine the current size of the farmed species and its growth condition, which is also called "growth factor" "Facility factors," "growth factors" plus "behavioral decisions" made by fishermen in different situations can create a "digital twin" in the cloud server Source of diagram Taiwan Salt Green Energy Co, Ltd commissioned Sanyi Design Consultants Co, Ltd to designnbsp With these two factors plus "behavioral decisions" made by fishermen in different situations, a "digital twin" can be created in the cloud server In this game-like "digital twin," we can simulate as much as we want to find the best "behavioral decision" under different "facility factors" and obtain the optimal "growth factorrdquo To put it in a way that is easier to understand, readers can try to imagine that we have a game called "Happy Fish Farm" The environmental parameters of the fish farm are all recorded from actual situations We also record the behavioral decisions made by each "Happy Fish Farm" player under different environmental parameters and the final results When the number of recorded data sets is sufficient, a digital twin of the fish farm can be obtained from machine learning, and then real-time data is simulated to obtain optimal combinations This simulated world is the "digital twin" of "Happy Fish Farm" How is the issue of sensors easily being damaged resolved However, there will always be challenges in the RampD process For example, underwater sensors such as water temperature and dissolved oxygen sensors are often damaged due to algae growth Underwater cameras that record the size of fish are often blurred and unrecognizable due to sediment or algae pollution on the bottom of the pond There are two solutions for overcoming the issue with sensor damage One is to regularly scoop water out from the pond and pass it through the sensor for detection The other is to make the sensor into a box and put it into the pond every day to detect the water quality As for the growth condition of fish and shrimp, fishermen only need to fish them out of the pond every day to take pictures and measure them Low cost and effective Team leader Chiu said "We are currently developing a 9-in-1 water quality detection box After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee" Team leader Chiu of IDEAS of the III said "The issue with sensor damage is the cost Even though it provides great benefits, it would be meaningless if fishermen are not willing to use it due to high cost We are currently developing a 9-in-1 water quality detection box After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee We are now very close to completing the integration, and welcome companies to discuss cooperationrdquo Difficulties in recording fishermenrsquos behavioral decisions Another challenge comes from fishermen Some fishermen will consciously record the water quality and environmental indicators they observe every day, and record their own operating strategies and results However, not every fisherman will do this This is why it is necessary to use GAN generative adversarial network technology, which is very important in AI GAN will generate possible strategies of fishermen based on past data, ie, it "guesses" the fishermen's decisions to supplement the behavioral decisions that the fishermen do not input If it is completed by fishermen afterwards, it will not affect the training data set After the award-winning technology is put into mass production, 300 production efficiency will no longer be out of reach Current applications of "digital twin" technology worldwide are mostly in aerospace and manufacturing Taiwan and the Netherlands are the first to engage in the RampD of digital twin in intelligent agriculture Therefore,the "Intelligent Agriculture Digital Twin" winning the US RampD 100 Awards is proof of Taiwanrsquos technological leadership We are currently completing the integrated water quality monitoring box and total solution, and the product is expected to increase production efficiency by 300 In the future, "digital twin" technology will not only be used in agriculture and fisheries, but can also be extended to industries that originally relied on "tacit knowledge", such as tea making, fisheries, etc Due to the digitization of the entire process, quality no longer relies on experience and the weather This can upgrade farmers' technology for "AI monitoring" and "precision production" In addition to improving the productivity of traditional agriculture and fisheries, it also has a good chance of achieving sustainable operations, upgrading the entire industry, and making it more appealing for young people to return to their hometowns to work in agriculture and fisheries Reference materials A key piece of the puzzle of smart manufacturing Innovative sensing technology that accelerates the realization of "digital twin" - Digital era

rows
Rows:73, 9 pages