Special Cases

05
2021.12
【2021 Application Example】 HRT Technology Improves Production Efficiency by 20% Through AOI Detection of Defects in VCSEL Packaging

In 2017, the launch of the iPhone X made 3D sensor technology used in Face ID highly popular, which drove the development of VCSEL, a core component in the 3D sensor module In the detection of defects in incoming packaged VCSEL, the use of AI inference models can solve the industry's issue with low yield and improve reliability to 95 VCSEL technology currently can be used in many applications and various end consumer markets, including robots, mobile devices, surveillance, drones, and ARVR VCSELs are a good solution in applications that require high-speed modulation capabilities, such as cameras and biometrics VCSEL technology has a wide range ofnbsp applications, including in drones Pictured Zoyi Technology's Agricultural Drone VCSEL technology has a wide range of applications, AI technology assists in defect detection HRT Technology stated that the packaged VCSEL market is also facing strong price competition from competitors, and needs to further reduce costs and enhance product competitiveness One of the key problems is the replacement of glass lens with epoxy resin lens The production of traditional glass lenses has high yield, but the cost is higher than that of epoxy resin lenses Due to the cutting process of epoxy resin, the side wall of cutting lines can easily have rough edges, causing it to be oversized The release of stress caused by heat during the mounting process will directly cause the optical lens to break HRT Technology pointed out that the incoming inspection of VCSEL epoxy resin lenses is very important Under the constraints of packaging space, the space for fitting the package and optical lens is limited Moreover, the optical lenses will be confined to a metal frame If the dimensional tolerances are properly controlled, stress release due to heat during mounting can easily cause the optical lens to break, resulting in a yield loss of up to 10 in the VCSEL package reliability verification, resulting in an increase in production costs In order to solve the problems above, HRT Technology hopes to use AI to monitor the size and appearance defects of epoxy resin components in the VCSEL epoxy resin lens incoming stage, verifying whether their dimensions meet specifications, whether the cutting edges are smooth, and whether there are any defects in their appearance Since traditional incoming material inspection requires a rough visual inspection by humans to distinguish the quality The problem of image collection needs to be solved first to successfully collect image data Therefore, HRT Technology first developed an Automated Optical Inspection AOI device, which includes X, Y, Z three-axis motion, high-resolution cameras, and related control software to automatically record images After collecting the image data, opencv aligns the test image and a normal image to determine differences between the two images, and then pixel mapping is used to compare the pixel area to complete initial screening Manual labeling is carried out according to the image classification above, including samples that are normal, have defects in appearance, or have different shape characteristics, and then algorithm training and verification is carried out Residual neural network ResNet or other related algorithms are used for deep learning to identify the quality of lenses Implementation of AOI inspection improves production efficiency by 20 and above Comparing the differences before and after the implementation of AI image inspection, the incoming VCSEL lens inspection before implementation only involved manual inspection of the appearance The lens is packaged on the VCSEL package that has completed die bonding After passing the general light up test, the final reliability test high temperature reflow is performed Failed samples go into the rework process However, after the implementation of AOI inspection, it can screen defective lenses sooner and reduce the cost of subsequent materials input, it can also reduce the need for rework due to failure, improving yield to 95 and above in the reliability verification This is expected to help companies reduce production costs by 10 and increase production efficiency by 20 and above The difference before and after implementing AI image detection HRT Technology pointed out that this technology is an AI application developed based on tiny images It uses deep learning algorithms to identify defects in the images The trained network automatically classifies image data to predetermined categories Defect categories can be determined through reference images, so cumbersome programming is not required In the industrial machine vision environment, deep learning is mainly used for classification tasks in applications, such as inspection of industrial products or identification of parts In the future, with the development of IoT wearable devices and the trend of energy saving, the size of optoelectronic components will continue to shrink This technology can be applied to the detection of defects in the appearance of other tiny optoelectronic components in the future

2021-12-05
【2021 Application Example】 Fongyu Uses AI Knowledge-based Fish Farming to Effectively Increase Aquatic Production by 10%

Fisheries is an important industry in an island economy However, the fish farming industry has faced severe challenges in recent years, including climate change, labor shortage, and rising costs In particular, nearly 110,000 workers in agriculture will retire due to old age over the next 10 years For this reason, the need for aquaculture to move towards smart farming is becoming increasingly urgent Founded in 2014, Fongyu Corp Ltd has developed a unique eco-friendly farming model based on its own fish farming It uses AI knowledge-based fish farming to effectively increase aquatic product production by 10, and reduced labor cost by 15 The word "Fongyu" has a profound meaning "Fong" represents good mountains and "Yu" represents good water, and is the hope that companies will allow Taiwan to always have good mountains and good waterIt is also a homophone for "having a full figure," expressing the hope that products will give consumers a full and healthy body and mind The founder of the company, Liu Chien-Shen, has been through the difficult entrepreneurial journey of becoming an apprentice in fish farming, raising funds, renting fish farms, establishing a fish farming company, building a brand, and expanding sales Labor shortage and aging workers are hidden worries in the fish farming industry Currently, fish farms in Taiwan are still mainly traditional fish farms, and farming techniques are still passed down through word-of-mouth In addition, the labor shortage and average age of workers exceeding 60 years old has made it impossible to effectively stably improve productivity and yield This farming method makes it difficult to prevent and control diseases, and greatly increases the possibility of excessive use of drugs, environmental pollution, and water quality and ecological damage, creating a vicious cycle that lowers the quality of fish farming In addition, 651 of workers in Taiwan's fish farming industry are inadequately skilled With limited support from IoT sensors, traditional fish farmers still mainly rely on their own experience and knowledge for water quality management, feeding, and disease detection Fish farming management relies heavily on the ability of individual fishermen Once experienced workers retire, the industry will not only face the issue of succession, but also the difficult of stably supplying a certain amount of harvest that meets quality standards This may cause a dilemma for the entire industry from fish farming to sales In order to improve the pain point of inability to pass on experience in fish farming, and at the same time create a "digital" foundation for fish farming, the top priority must be to collect farming behavior data and develop AI services as an important starting point Fishery digital twin technology helps fishermen transition to smart farming With the assistance of the Institute for Information Technology III, Fongyu implemented the "fishery digital twin" technology to dynamically adjust the farming schedule In other words, the fish farming schedule is adjusted according to the species, habits, and variables of the fish The use of AI in fish farming not only effectively increase aquatic production by 10, but also reduced labor cost by 15 In terms of specific methods, we first digitalized the fish ponds, feed, and decision-making behavior for each species, such as sea bass and Taiwan tilapia, and recorded the seasonal temperature changes from releasing seedlings to harvesting, all of which were digitalized, gradually recording the experience and methods of experienced workers into a rich database Based on the recorded data, we analyzed the compound variables to find the best farming behavior and generate a dynamic farming schedule The records for each pool provide data on workers' experience However, fish farming behavior generally relies on rules of thumb Even experienced fish farmers cannot ensure that they will find the best solution Therefore, new methods are proposed to solve this issue That is, "to determine the best fish farming behavior by predicting the interaction with water quality and past data on feeding, and evaluating fish farming behavior based on water quality and fish farming," and provide fishermen with the most intuitive recommendations through daily schedules To continue optimizing the dynamic fish farming calendar on a rolling basis, iterations of the model will be developed through the three-step cycle 1 Input the current fish farming calendar into the model 2 The model predicts the future environment 3 Shortcomings of the fish farming calendar are corrected based on the future environment to obtain a new version of the fish farming calendar In the process, the experience of aquaculture experts is used to establish the causal relationship between fish farming behavior and the environment The establishment of a dynamic fish farming process and technology-based fish farming recommendation services provide a traceable and detailed fish farming process It is one of the few technologies that can digitalize fish farming Fishermen can quickly and easily record their daily behaviors to build knowledge without taking up too much time, but in the long run it can reduce labor cost by 15 and increase output and revenue by an average of 10 Smart fish farming has achieved outstanding results, reducing labor cost by 15 and increasing output by 10 At the same time, the fish farming calendar can also be extended to different aquatic species, such as white shrimp, milkfish, clams, and Taiwan tilapia, to produce fish farming schedules for ponds with different specifications, and the harvested aquatic species can be traced according to different specifications, establishing vertically integrated services for safe food products Fongyu's main products are divided into two categories One is aquaculture modules, including fry, feed, materials and probiotics, production planning and processes, and monitoring, which can be sold separately or exported as modules The high-quality aquatic products produced by Fongyu have repeatedly won awards Figure Fongyursquos official website The other category is high-quality aquatic products, including seabass fillets, seabass balls, oil-free seabass balls, seabass dumplings, and seabass soup The products have won various awards, including the top ten souvenirs in Pingtung in 2017, "Barramundi Fillet" won the 2017 Eatender of the Council of Agriculture COA, "Oil-Free Barramundi Fillet" won the 2018 Eatender Gold Food Award of the COA, and "Dumplings of Barramundi" and "Barramundi Broth" won the 2019 Eatender of the COA The consecutive awards represent that the "quality" of Fongyursquos aquatic products can be seen and eaten with peace of mind In addition, Fongyu has exclusive fingerlings that meet international needs, such as Pure seawater cultured tilapia fingerlings and seawater Taiwan tilapia fingerlings from selective breeding FY-01 are items that aquaculture companies in many countries are looking forward to The company also has aquaculture modules, disease monitoring tools, and feeding materials designed in accordance with the environment, in order to provide customers with more stable income

2021-09-28
【2021 Application Example】 AI Analysis Cloud Service Platform for Remote Sensing Big Data Enables the Smooth Application of Satellite Remote Sensing Images

Although satellite remote sensing images can make all surface objects visible, it still requires a lot of time and manpower to be truly applied to the industry In order to effectively solve the problems that customers face in digesting huge amounts of image data and eliminate technical obstacles for cross-domain users to process satellite remote sensing images, ThinkTron has developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" as a new beginning for cross-domain AI applications for spatial information In recent years, in response to the impact of industrial globalization, Taiwan's agriculture has continued to transition towards technology-based and higher quality, improving the yield and quality of crops by solving problems, such as microclimate impacts and pest and disease control The demand of agriculture on images has expanded endlessly to accurately grasp the growing environment of crops In the early years when UAVs unmanned aerial vehicles were not yet popular, manual field surveys were the most basic but most labor-intensive work With the emergence of UAV drones, aerial photography operations might not be difficult, but the range that can be photographed is limited Furthermore, surveying expertise is required to accurately capture spatial information At this time, the use of satellite remote sensing data may break away from the past imagination of using image data Taiwan Space Agency TASA ODC data warehouse services In the past ten years, with the breakthrough of modern satellite remote sensing application technology, Digital Earth has become a new trend in global data collection Countries have developed data cube image storage technology, and the development of smart agriculture has become one of the largest image users Determining planting distribution is the first step in understanding crop yields Free satellite remote sensing images, powerful data warehousing support, and the team's robust image recognition technology are important supports for accelerating agricultural transformation Using satellite remote sensing image data can accelerate the development of smart agriculture However, in the past, it was difficult to extract large-area crop distribution through satellite remote sensing images, not to mention the cost If you wanted to use free information, you had to visit all websites of international space agencies, look through the wide variety of satellite specifications, and carefully evaluate the sensor specifications, image resolution, and revisit cycle After finding suitable images, you had to look at them one by one to filter the ones you need Next is downloading dozens of images that are often several hundreds of Megabytes MB each, which might exceed the capacity of your computer Also, after overcoming image access and preparing data, you must then start to confirm the downloaded image products and which bands you want, because the image you see is not just an image file jpg or png, but rather complex multi-spectral information, attribute fields and coordinate information It takes a lot of effort just to confirm the correct information Facing GIS software packages with complex functions is the start of another trouble The complex image pre-processing process and the inflexible machine learning package greatly reduce the efficiency of analyzing data After finally getting the results of crop identification, you might find that the best time for using map information may have already passed The above-mentioned complex and time-consuming satellite image processing problems are precisely the pain points of the market ThinkTron expanded from traditional machine learning to modern deep learning applications, and developed an "AI Analysis Cloud Service Platform for Remote Sensing Big Data" under the GeoAI framework, breaking through the constraints of details in the spatial information for customers Differences between the process before and after introducing the AI analysis cloud service platform ThinkTron said that Taiwan's ODC Open Data Cube system has been completed and began providing services after years of efforts from the Taiwan Space Agency TASA, formally becoming aligned with international trends The powerful warehousing technology allows users to easily capture and use image data of a specific time and spatial range according to their needs The warehouse stores multiple satellite image resources from international space agencies, including the ESA's Sentinel-1 one image every 6 days, Sentinel-2 one image every 6 days, USGS's Landsat-7 one image every 16 days, Landsat-8 one image every 16 days, and the domestic Formosat-2 one image every day and Formosat-5 one image every 2 days ThinkTron develops satellite image recognition tools based on Python Breaking free from the limitations of GIS Geographic Information System software packages, ThinkTron integrated GDAL Geospatial Data Abstraction Library based on Python, and considered computing efficiency and parallel processing when developing all tools required for satellite image processing and image recognition modeling, including coordinate system and data format conversion, grid and vector data interaction, and data intra-difference and normalization All of the tools are designed with AI applications in mind, and some commonly used tools are packaged into an open source package under the name TronGisPy to benefit the technical community ThinkTron utilized the team's understanding of satellite remote sensing images and the collected tagged data crop distribution maps to preset the image recognition modeling process, the required training data specifications, and dataset definitions This is imported into the machine learning LightGBM or deep learning CNN framework that was completed in advance, and the entire training process to be performed in the Web GIS interface, providing users with partial flexibility to freely filter images, confirm spatial and temporal ranges, select models, and adjust hyperparameters In addition to the operation of training models, it also provides historical models to output identification results, and finally displays the identification results of crop distribution on the Web GIS map In fact, agriculture is not the only industry that needs satellite remote sensing applications AI applications of spatial information have also appeared in various fields as companies in different industries aim to enhance their global competitiveness For example, surveying and mapping companies that have a large amount of map data can use the AI analysis cloud service platform to store map data while also accelerating the efficiency of digital mapping Under the severe global climate change and the risk of strong earthquakes, there is a wide variety industrial insurance, agricultural insurance, financial insurance, or disaster insurance are all inseparable from spatial information The use of remote sensing image recognition to understand insurance targets has long been an international trend AI Analysis Cloud Service Architecture for Remote Sensing Big Data

2021-11-28
【2021 Application Example】 AI Complements the Disruption of Traditional Industry Experience: Production Forecast Analysis in Plastic Recycling Process

As the number of veteran craftsmen in traditional industries diminishes In Taiwan, SMEs have always played a central role in Taiwan's industry, accompanying Taiwan through various 'economic miracles' periods But as time progresses, the old masters gradually became elderly craftsmen Coupled with the phenomenon of fewer children and changes in the overall industrial structure, fewer and fewer of the new generation are willing to enter traditional industries Now, it can be observed that the main combination on most SMEs' operational fields is formed by 'elder craftsmen' together with 'foreign workers' These experienced craftsmen, who act as living dictionaries of field experience, suffer from a lack of successors to continue the tradition, leading to a growing difficulty in sustaining on-site experience transfer in traditional industries The limits of traditional hands-on process optimization are in sight Located in Tainan Baoan Industrial District, 'Tangxian Company' was established in 1972, initially manufacturing high-quality weaving equipment It possesses the capability to manufacture machinery, and in recent years it has actively developed environmentally friendly plastic recycling equipment in response to international green energy, recycling, and environmental protection demands Ultimately, they have successfully developed low energy consumption, low waste, high purity, and high output recycling granulators with a sleek and efficient machine design supplemented by advanced intelligent control technology Tangxian Company's self-developed plastic recycling granulator equipment However, in the production process of plastic recycling, when faced with hundreds of material types and dozens of process temperatures, speed settings, what is faced is thousands of possible parameter combinations Previously, the adjustment of various production process conditions was reliant on the on-site staff the experience of the craftsmen Thus, during the transition of production of different incoming materials such as PET, PP, PE, a significant amount of raw materials would be wasted during the trial phase The professional information gap in traditional industries Tangxian Company recognizes the importance of data In the past, although process parameters were recorded, due to a lack of data capabilities at the time, it was primarily in paper form, manually written down by the operating staff, accumulating a large amount of paper data However, this also meant a lack of scientifically accurate and detailed information available for real-time reference and adjustment Process parameters logbook, records the state of about a dozen machines and production figures hourly In quality control as well, due to a lack of control over the quality of output and monitoring and feedback mechanisms for unit time production, it becomes difficult to predict the profit conditions of each batch Production management can only estimate and average cost and productivity changes over the process from the outcomes, without being able to objectively and timely restore the production conditions to reasonableness or make clearer adjustments when facing quality abnormalities Site reality left image shows recycled scraps right image shows pellet production Taiwanese manufacturers possess strong machinery manufacturing capabilities, and many modern machines now have data capabilities, recording real-time status and information via IoT But is the infrastructure of the factory's on-site and information systems ready yet When the Old Master Meets AI With government referral, Tangxian Company partnered with a Taiwanese data science company, working together to integrate AI services and optimize internal processes using AI They started with a medium-sized plastic recycling production line within the factory as a trial field After establishing a successful benchmark, this model was expanded to larger plastic recycling machinery within the factory to continue verification and application Initially, both parties converted the past handwritten paper data into digital format using OCR supplemented by manual correction Tangxian Company also worked with the supplier of the human-machine interface of the machinery to integrate the control panel and parameter data into the factory's database, allowing real-time monitoring of machine status and eliminating the complexities and potential errors of manual transcription Panel of plastic recycling granulation machine, showing current process temperatures, speeds, and power usage Meanwhile, the Taiwanese data science company further modeled dozens of parameter data through AI, conducting scenario analysis to simulate various production possibilities under environmental parameters and material inputs, identifying key characteristic parameters and providing parameter adjustment recommendations to decrease costs during the trial phase Applying data analysis to traditional industry machinery processes After the old master receives the raw materials, they only need to enter the relevant material characteristic parameters, and the system automatically generates recommended process parameters After small adjustments by the old master, they proceed with the trial production of the material, effectively reducing the waste of materials, water, electricity, and manpower caused by incorrect attempts Moreover, Tangxian Company has proactively deployed the concept of 'production pedigree' in the plastic recycling process, allowing the batch's raw materials and process parameters to be accessed by scanning a QRCode Production and sales pedigree of plastic recycling pelletizing Taiwan's SMEs have strong machinery capabilities, just waiting for the 'east wind' of data From industrial revolutions 20 to 30, even 40, many Taiwanese SMEs face challenges in transitions not just in upgrading machinery, but after investing in modern equipment and generating data, they do not know how to utilize it effectively It is impractical for these manufacturers to develop a specialized data analysis department on their own meanwhile, Taiwan also has many innovative teams with strong software capabilities in AI and data analysis, possessing the technology but lacking the field and data Therefore, if the traditional industries of Taiwan could be fully integrated with the innovative teams in AI and data analysis, it would not only address the current challenges of manpower and experience transfer faced by traditional industries but also advance Taiwan's development and application of AI significantly「Translated content is generated by ChatGPT and is for reference only Translation date:2024-05-19」

2021-01-21

Records of Application Example

【導入案例】智慧農漁業數位分身:一個高效率、永續經營的農漁業升級解決方案。養殖漁業如何靠著稱為「數位分身」的AI 技術達成三倍產量
【2019 Application Example】 Smart agriculture and fisheries digital twin: A highly efficient and sustainable agriculture and fisheries upgrade solution. How did the AI technology called "digital twin" triple the output of aquaculture?

Relying on nine types of sensors to detect water quality, while monitoring the growth of the farmed species and fishermen's behavioral decisions, the artificial intelligence AI solution "Smart Agriculture and Fisheries Digital Twin" can significantly increase production by 300 The ldquoHappy Harvestrdquo - style high-tech integrated solution allows novices to get started quickly It significantly reduces the reliance of agriculture and fisheries on experience, and makes it more appealing for young people to return to their hometowns to work in agriculture and fisheries There was a time when Facebook games were just starting to become popular, and everyone could be called a farmer due to the popular game ldquoHappy Harvestrdquo Office workers took out their mobile phones one by one during their lunch breaks and started living the life of a happy farmer life on their mobile phones Some people were naughty, secretly went on Facebook during work hours to steal the harvest from their colleagues The game was so therapeutic that some people actually went into the fields to become farmers during the holidays If I said that "Happy Harvest" really exists, would you believe me THE "Digital Twin" -"Smart Greenhouse" and "Smart Farm" solutions developed by the Innovative DigiTech-Enabled Applications amp Service Institute IDEAS Institute for Information Technology III are "Happy Harvest" and "Happy Fish Dream Aquarium" in real life Here, nine sensors based on IoT will continuously monitor the "facility factors" of the cropaquaculture growth environment, such as water quality, and upload them to the cloud through the control box The AI robot in the cloud will continue to simulate a digital twin in the system, receiving "facility factors" such as water temperature and dissolved oxygen, and continuously collecting "growth factors" for the growth status of cropsfarmed species A simulated "digital twin" of the fisherman is created in the cloud system, and the AI robot will also calculate appropriate "behavioral decisions" based on the successful strategies of past fishermen When the oxygen content is low and the water temperature exceeds the standard, AI will suggest you to make behavioral decisions, such as turning on the water wheel, turning on the aerator, or using medication Fishermen use their own experience or knowledge to decide whether to follow the suggestion Afterwards, the system will compare the results of the decision, and fishermen can also judge based on the results whether the decision made by a real person is better than the behavioral decision made by the ldquodigital twinrdquoIn addition, the digital twin AI of smart agriculture operates in the background around the clock, silently recording and analyzing the corresponding "behavioral decisions" of fishermen in response to various "facility factors" and "growth factors" in smart farms Decision-making", slowly establishing the best solution model for the farming strategies Slowly, AI silently learns these "tacit knowledge" from fishermen like a little apprentice at their side, so that this knowledge will not be lost when the fishermen retireMoreover, this technology can not only be used to "farm fish," but also "farm vegetables" These optimized farming models can become a precious database Even novices who have just entered the industry can skip the process of exploration and directly become a master The greatest challenges currently faced are insufficient manpower, aging population, loss of experience, and high cost of new technologies Taiwan is famous for its agricultural technologies and farming technologies However, small farmers generally have a shortage of manpower and aging workers Digital transformation is imperative The cost of new technologies is too high for 80 of small farmers and fishermen Since there are too many uncertainties in environmental factors, such as climate change, and water quality changes, they are all highly dependent on experience Therefore, the most severe challenge comes from farmers and fishermen retiring before young farmers and fishermen can take over, and many years of experience are lost because they cannot be passed on Smart agriculture and fisheries digital twin allow continuous optimization without downtime "Digital twin" is an emerging technology that combines AI and HI craftsman wisdom, and was rated by Gartner as one of the top ten key technologies for the future for three consecutive years The Department of Industrial Technology, Ministry of Economic Affairs began to engage in RampD of digital twin in 2016 It believes that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning In the field of aquaculture, the "digital twin" of AIoT Artificial Internet of Things for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen Using the analysis of "facility factors" constructed from different types of water quality data and ldquogrowth factorsrdquo such as fish and shrimp images and disease symptom images, as well as the "behavioral decisions" of fishermen, to train AI can produce optimized models for water quality management, aquatic product growth management, and aquatic disease managementThe "digital twin" of AIoT for "fishery and electricity symbiosis fish farms" digitalizes the tacit knowledge of fishermen These AI management models are combined to create a smart farming solution with high survival rate and high feed conversion rate The entire farming process has digital monitoring data and quality that can be analyzed Traceability can reach the initial stage of farming, greatly improving the quality, value, and output of aquatic products Despite promising prospects, there are still many challenges The III IDEAS first become involved in ldquodigital twinrdquo due to a forward-looking technology project supported by the Department of Industrial Technology, Ministry of Economic Affairs in 2018 At that time, the Department of Industrial Technology believed that in addition to automation efficiency, industries also need to digitally preserve experience and skills to develop optimal human-machine collaboration technologies through AI and HI interactive learning Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan subsequently supported the application of "digital twin" in smart agriculture "The application of digital twin technology in agriculture helps small farmers digitally accumulate experience, and improves their agricultural skills through the interaction of group experience and AI, resolving the greatest challenge of intelligent agriculturerdquo Intelligent agriculture digital twin technology is expected to increase production efficiency by 30 after commercialization and is quite promising Team leader Qiu Jingming "The behavioral decisions made by powerful fishermen are three times better than those of ordinary fishermen in terms of results" nbsp Digital Twin Aqua-Solution After working with technology-based aquaculture companies and gaining support from an industry project of the Industrial Development Bureau, Ministry of Economic Affairs, III IDEAS applied digital twin technology in the field of "smart fish farms" The field application team responsible for aquaculture pointed out ldquoIn fish farms, fishermen often make different behavioral decisions when facing various environmental changes The behavioral decisions made by experienced fishermen are three times better than ordinary fishermen in terms of results For example, the survival rate of white shrimps is generally about 10, but some fishermen can achieve a yield of up to 30 This reduced production costs and tripled profitsDigital twin technology can pass on the tacit knowledge of these experts and ultimately upgrade the entire industry" The "digital twin" is composed of 9 sensors, fish images, and fishermen's behavioral decisions 9 sensors, constantly monitoring "facility factors" such as water quality IDEAS uses nine sensors to monitor water quality, nbspincluding dissolved oxygen, water temperature, pH, salinity, turbidity, ammonia nitrogen, nitrate, chlorophyll a, and ORP Oxidation-Reduction Potential, in order to obtain the environmental data of various farms These factors are also known as ldquofacility factorsrdquo In addition, fishermen will regularly take fish and shrimp out of the pond, or use submersible cameras to take pictures of farmed species underwater This is used to determine the current size of the farmed species and its growth condition, which is also called "growth factor" "Facility factors," "growth factors" plus "behavioral decisions" made by fishermen in different situations can create a "digital twin" in the cloud server Source of diagram Taiwan Salt Green Energy Co, Ltd commissioned Sanyi Design Consultants Co, Ltd to designnbsp With these two factors plus "behavioral decisions" made by fishermen in different situations, a "digital twin" can be created in the cloud server In this game-like "digital twin," we can simulate as much as we want to find the best "behavioral decision" under different "facility factors" and obtain the optimal "growth factorrdquo To put it in a way that is easier to understand, readers can try to imagine that we have a game called "Happy Fish Farm" The environmental parameters of the fish farm are all recorded from actual situations We also record the behavioral decisions made by each "Happy Fish Farm" player under different environmental parameters and the final results When the number of recorded data sets is sufficient, a digital twin of the fish farm can be obtained from machine learning, and then real-time data is simulated to obtain optimal combinations This simulated world is the "digital twin" of "Happy Fish Farm" How is the issue of sensors easily being damaged resolved However, there will always be challenges in the RampD process For example, underwater sensors such as water temperature and dissolved oxygen sensors are often damaged due to algae growth Underwater cameras that record the size of fish are often blurred and unrecognizable due to sediment or algae pollution on the bottom of the pond There are two solutions for overcoming the issue with sensor damage One is to regularly scoop water out from the pond and pass it through the sensor for detection The other is to make the sensor into a box and put it into the pond every day to detect the water quality As for the growth condition of fish and shrimp, fishermen only need to fish them out of the pond every day to take pictures and measure them Low cost and effective Team leader Chiu said "We are currently developing a 9-in-1 water quality detection box After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee" Team leader Chiu of IDEAS of the III said "The issue with sensor damage is the cost Even though it provides great benefits, it would be meaningless if fishermen are not willing to use it due to high cost We are currently developing a 9-in-1 water quality detection box After successful integration, we can prepare for mass production and start commercial operation by selling the box plus a monthly connection fee We are now very close to completing the integration, and welcome companies to discuss cooperationrdquo Difficulties in recording fishermenrsquos behavioral decisions Another challenge comes from fishermen Some fishermen will consciously record the water quality and environmental indicators they observe every day, and record their own operating strategies and results However, not every fisherman will do this This is why it is necessary to use GAN generative adversarial network technology, which is very important in AI GAN will generate possible strategies of fishermen based on past data, ie, it "guesses" the fishermen's decisions to supplement the behavioral decisions that the fishermen do not input If it is completed by fishermen afterwards, it will not affect the training data set After the award-winning technology is put into mass production, 300 production efficiency will no longer be out of reach Current applications of "digital twin" technology worldwide are mostly in aerospace and manufacturing Taiwan and the Netherlands are the first to engage in the RampD of digital twin in intelligent agriculture Therefore,the "Intelligent Agriculture Digital Twin" winning the US RampD 100 Awards is proof of Taiwanrsquos technological leadership We are currently completing the integrated water quality monitoring box and total solution, and the product is expected to increase production efficiency by 300 In the future, "digital twin" technology will not only be used in agriculture and fisheries, but can also be extended to industries that originally relied on "tacit knowledge", such as tea making, fisheries, etc Due to the digitization of the entire process, quality no longer relies on experience and the weather This can upgrade farmers' technology for "AI monitoring" and "precision production" In addition to improving the productivity of traditional agriculture and fisheries, it also has a good chance of achieving sustainable operations, upgrading the entire industry, and making it more appealing for young people to return to their hometowns to work in agriculture and fisheries Reference materials A key piece of the puzzle of smart manufacturing Innovative sensing technology that accelerates the realization of "digital twin" - Digital era

rows
Rows:73, 9 pages