:::

【110年 解決方案】 行動貝果讓AI像Excel一樣簡單高效 提升數據分析力

甚麼是AutoML(自動化機器學習),與ML(傳統數據分析)有何不同?需要先來進一步釐清。

傳統的機器學習必須經過資料清理、資料前處理、特徵工程、特徵選擇、演算法選擇、模型建立、模型訓練、參數調整,再到評估結果,產出模型應用。過程中,一但參數有問題,必須從新選擇演算法、重新建立模型等,來來回回重複上百次。若萬一有了新的資料,所有的步驟都要重走一遍。 透過自動化機器學習,模型應用的產出過程只需要經過資料清理、特徵工程、數據建模及模型評估等四大步驟的自動化,即可達到模型應用,即使需要蒐集新資料,也能透過自動化機器學習達成,省時又省力。

ML與AutoML之比較    資料來源:行動貝果有限公司

▲ML與AutoML之比較 資料來源:行動貝果有限公司

AutoML是一種能夠讓機器學習模型開發中耗時的反覆工作自動化的程序,這讓相對缺乏AI人才的中小型企業,也能自己打造客製化的機器學習模型。近年來,國際大廠紛紛搶入這塊市場,包括Google於2018年發表的Cloud AutoML,以及雲端運算龍頭AWS在2019年推出AutoPilot,AutoML已然成為主流學習服務的標準配備,從網頁化介面、免程式開發及工作流程視覺化管理等,服務發展面向越來越多元。

行動貝果(MoBagel )是一群由頂尖資料科學家、工程師、產品專案管理師組成的專業團隊,團員來自各地名校,包括美國史丹佛、柏克萊、牛津、台灣大學等,同時也曾獲選參與矽谷知名加速器500 Startup、獲選參加日本SoftBank Innovation Program、也在Nokia的Open Innovation Challenge中得名。

行動貝果Decanter AI平台,讓分析專案從兩個月縮短至兩天

行動貝果專攻資料科學和機器學習技術,在2016年研發自動化機器學習分析工具Decanter AI,迄今已幫助超過100家的企業將AI導入重要的決策中,分析專案從兩個月縮短到兩天。服務過的領域包含零售、電信、製造、金融等產業。

行動貝果有限公司副總經理林昱申表示,Decanter AI讓AI像Excel一樣簡單高效,可以提升企業數據分析生產力。使用者不需要先具備深厚的專業知識與經驗,透過簡單的超作介面,就能進行自動化機器學習來作資料分析與預測。

使用Decanter AI有簡單三步驟: 步驟一、將數據整理成csv格式 ;步驟二、上傳至DecanterAI設定預測目標 步驟;三、Decanter AI自動建模,獲得預測成果 。部署方式可以在公有雲,也可落地到企業端的私有雲,內部資料上傳之後,即可建模使用。
 

DecanterAI使用三步驟,簡單又方便

▲DecanterAI使用三步驟,簡單又方便

AutoML的優點是能夠自動化訓練大量模型、調整參數、產出最佳模型,快速部署、快速導入,在新冠肺炎病毒(COVID-19)疫情之後,各行各業面臨新的市場變局,必須透過快速、便捷的數位工具進行數位轉型。

行動貝果近年來,持續推動DecanterAI平台的優化與建立產業資料建模分析能力,並產生實質效果。如中華電信運用平台針對攜碼客戶進行盲測,並進行數據分析,有效降低用戶的離網率並提高客戶留存率。國內龍頭食品大廠,由於飲品有效期,加上冷鏈的生產與銷量情況必須完全整握,才能降低庫存與損耗等問題,在導入DecanterAI平台之後,除了可精準預測市場需求量,根據效期數據分析生產及配銷數量,也有助於降低倉儲物流成本。

AutoML產業應用多元廣泛 未來發展潛力大

行動貝果認為,AutoML在產業應用十分廣泛多元,包括製造業所困擾的員工離職預測、生產需量預測及營收績效預測;智慧零售業的門市客流預測、商品補貨預測、會員促銷預測;電信業的客戶流失預測、潛客名單預測;金融業的理財精準行銷、信用卡盜刷偵測及保險申辦快審,甚至於房地實價預測、停電災損預測等,都有助於解決產業的經營困境,創造新的商業模式。

AutoML產業應用多元,涵蓋製造、零售、金融等產業     資料來源:行動貝果有限公司

▲AutoML產業應用多元,涵蓋製造、零售、金融等產業 資料來源:行動貝果有限公司

AutoML導入期需要花費多少時間與準備?林昱伸表示,在實際做法上,自動化機器學習企業導入進程包括四大期間:

一、 準備期:協同企業討論聚焦商業痛點,協助定義分析命題,並提供資料科學專業建議與最適解決方案,為期兩周左右時間。

二、 驗證期:以小範圍試點專案快速驗證分析成效,確保命題設定、數據品質、分析流程、預測技術等面向,作為後續實務應用與放大之基礎。需要花費三周時間。

三、 導入期:依企業需求支援雲端或本地端產品部署。提供操作與維運教學、Help Center、數據分析顧問諮詢、企業培訓課程等產品導入服務,需時一個月以上。

四、 應用期:分析/數據團隊可透過產品通用介面執行各項AI專案,快速落地。並可透過API串接預測引擎,依實務場景開發應用模組,此一為應用最後階段,耗費時間較多,需時長達數月之久。

然而,行動貝果與SI夥伴進行系統整合專案流程,由SI夥伴進行商業命題討論,及提供資料集,隨後進行資料健檢與Baseline模型,據此,行動貝果提供資料診斷報告,確認試點專案命題之後產出需求規劃書,就進入專案執行階段,模型建立、優化及提供分析報告。與SI業者進行系統整合,一方面優化處理模組開發,另一方面使用API串接數據源與輸出預測結果,導入企業的場域,有效解決企業在面臨數位轉型中的命題。

展望未來,Decanter AI平台上將持續開發各項AI創新應用服務,與產業上中下游如企業資源規劃(ERP)、顧客關係管理(CRM)、商業分析(BI)與電子商務平台(EC)等夥伴,以共創、共享與利他的方式極大化生態圈效益。

(本文源自於「AI Engineering線上小聚」內容精選整理)

推薦案例

這是一張圖片。 This is a picture.
讓會議紀錄不再曠日費時 迪威智能Meeting Ink用AI幫你記錄會議

Meeting Ink企業版同步推出中 根據最新研究顯示,一般會議後若沒有即時追蹤與複習資訊,兩小時內將遺忘約50的內容,經過多層轉述和彙報,更可能遺漏超過三分之一的關鍵資訊。會議記錄對於流程嚴謹的企業和公部門尤為重要。然而,大量會議需求下,記錄可能造成會議成果遺失及團隊負擔。看準這一市場痛點,台灣AI新創迪威智能(DeepWave)推出「Meeting Ink」mdashmdash一款結合語音、文字、和自動化AI技術的全新會議紀錄解決方案。Meeting Ink 不僅支援語音轉文字、語者辨識、逐字稿翻譯、及自動化會議重點摘要,還提供消費端和企業端的靈活服務,並於今年Q4增添即時逐字稿與翻譯功能,開創會議管理新格局。 AI技術一站式解決會議紀錄痛點 自2023年底上線以來,「Meeting Ink」已成為市場上高效、準確的會議紀錄管理解決方案。迪威智能結合其自有技術、第三方工具與微軟Azure的語音識別技術,打造出最佳的語音轉文字體驗,並附加語者辨識與分段、多語言翻譯,以及多種場景下的會議摘要功能。為了實現更廣泛的應用,Meeting Ink也提供即時應用方案,使其不僅適用於日常會議,也能滿足活動、論壇、學習課程等多樣場景。目前,Meeting Ink 支援APP和網頁雙平台,並提供企業客製方案以進一步擴展應用。 優秀的聲音識別技術和最佳使用者體驗 「Meeting Ink」在市場中的優勢在於其精確的聲音識別技術和以使用者為中心的應用設計。依靠迪威的專有技術,Meeting Ink 能將語音訊號轉換為具有語者代表性的文本內容,識別每位與會者的聲音,確保資訊被清晰區分。除此之外,會議內容可以進一步根據語者進行摘要彙整,並在迪威的優化系統加持下,生成不同場景和角色的專屬摘要模板。無論是企業高層會議、學術論壇,還是個人訪談和學習課程,Meeting Ink都可依照不同背景產生量身定制的摘要內容,為會議紀錄帶來更高效、靈活的使用體驗。 精準定位企業需求,提供全方位企業應用 洞察到未來市場需求的轉變,迪威智能推出了針對2B架構的客製化服務方案,進一步優化了Meeting Ink在企業端的應用。企業客戶可使用專業版功能並享有獨家客製設計的摘要模組,以符合特定產業的需求。迪威智能承諾定期更新AI模組,確保提供最先進的技術支援。此外,Meeting Ink的企業服務方案更強調數據安全、帳號權限管理、無上限儲存空間、多裝置兼容支援所有錄音情境等,並以市面上最低的錄音時價,為企業提供經濟高效的解決方案,讓企業可專注於核心工作,提升整體會議效率。 把握AI時代脈動,領先應用市場 根據2023年市場報告,AI應用工具在未來十年內的全球市場將從近70億美元成長至500億美元,且商業與學習工具將是市場中的關鍵角色。面對AI技術發展的快速進程,迪威智能憑藉自身技術實力與創新能力,以Meeting Ink打入國際市場,並持續為企業與個人帶來會議紀錄的革命性變革。未來,迪威將不斷優化Meeting Ink,致力於推動AI技術與人們日常工作、學習場景的緊密結合,為用戶創造更便捷、高效的工作環境。

【解決方案】讓硬碟裡的音樂重生 愛飛媒平運用AI為影像找到最佳拍檔
讓硬碟裡的音樂重生 愛飛媒平運用AI為影像找到最佳拍檔

一名年輕女孩,孤身在美國洛杉磯,為的是尋一個夢,一個能讓音樂創作者深埋在硬碟中的創作音樂重新找到知音的夢helliphellip。 愛飛媒平創辦人李姿慧,理工科出身,心中卻卻深埋音樂人的強大基因,為了協助全球音樂人創作音樂能找到能配對成功的「最佳夥伴」,她創立愛飛媒平公司,提供一站式AI影像音樂媒合平台AV Mapping,協助影像創作者可以快速找到擁有版權的原創音樂。 一站式AI影像音樂媒合解決方案,為音樂創作者找到創新商機 一般來說,以往影像創作者要進行影像配樂,從作詞曲、配樂、找版權,通常需要花上兩周時間,透過AV Mapping影像音樂媒合平台,10 秒鐘立即配對到適合的音樂,音樂人也可以將創作再行銷取得分潤營利,創造三贏局面。此一嶄新、去中心化的營運模式,也獲得已故台灣音樂大師-李泰祥傳人的青睞,在平台上可重溫那一段讓音樂創作恣意飛翔的時光。 李姿慧從小練鋼琴、參加合唱團及管樂團,並自己創作音樂,大學雖然念的是理工科系-成功大學測量及空間資訊學系,但從大三開始,即加入影像團隊從事配樂,並赴南藝大應用音樂系旁聽。大學畢業後,李姿慧決定順從心裡的聲音,當音樂的尋夢人。 愛飛媒平提供一站式AI影像音樂媒合解決方案 愛飛媒平提供一站式AI影像音樂媒合解決方案,主要係藉由人工智慧的影像辨識和音樂分析,影像創作者在平台上可自行搜尋、配對合適的音樂,透過系統可將配樂的時程從8小時縮短至幾秒鐘,大幅縮短近2,000倍。 李姿慧表示,傳統影像配樂工程除了創造合適配樂,還須將大量時間成本投注在溝通及搜尋上,包括後續的編曲、錄製等後製處理和音樂授權更是耗時耗力,有了AI的協助,創作者能將所有心力花在創作上,不必擔心找不到適合音樂,或是音樂版權遭盜用的困境。 虛實整合行銷,從交易到簽約一鍵完成 目前愛飛媒平的音樂資料庫共有6萬首曲目,種類超過60種,涵蓋歐美及亞洲等世界各地音樂,包含流行、EDM、搖滾、愛爾蘭音樂等。愛飛媒平獨創的去中心化概念更大幅保障音樂人權益,在平台上的音樂人可自行訂價並追蹤交易流程,達到公開透明、去中心化的特性。目前平台上包括影像及音樂創作者共有7,000多位,音樂創作者在平台上交易成功,可分潤4成以上,最高達到5成。雙方在平台上交易並完成簽約,手續十分簡便。 AVMapping共有14種AI模型,輕鬆找到速配音樂 李姿慧表示,AI影像音樂媒合解決方案共有14種AI模型,其作法是拆解所有元素之後,透過影像辨識與文字辨識,做音樂分析,再運用機器學習演算法大量訓練,將影像及音樂的特徵列出,即能快速媒合出合適影像情境、氛圍、節奏的配樂。 除了線上媒合交易外,愛飛媒平也舉辦實體音樂會活動,邀集音樂及影像創作者參與,活動的內容環繞在AI影像配樂的展示,現場運用導演一段影片讓音樂創作者PK配樂;或是拿出示範影片,由AI進行配對,只需耗費端端10秒鐘,AI配對的影像與音樂在情緒及氛圍上都十分到位,讓現場參與者嘖嘖稱奇。 三年研發獲紅點設計大獎,以科技支持音樂藝術發展 愛飛媒平花了三年的研發,平台於2021年8月正式上線,2022年元月份在美國拉斯維加斯參加CES活動,引起在場記者高度關注,共獲得超過上百家的媒體報導,使得一個月使用次數就超過千倍,吸引7,000位影像、音樂創作業者加入媒合平台,據統計,先階段美國與台灣媒合交易比重各半。 李姿慧表示,傳統音樂的授權方式十分複雜,包括著作類型、著作財產權種類等,要取得一首歌曲的授權,必須經過詞曲經紀公司、集管團體、製作公司、唱片公司,甚至是作曲、作詞者,十分繁瑣,音樂人也並不一定能得到分潤收入。透過AI影像音樂媒合平台,所有交易合約在線上完成,音樂創作者能獲得利潤,創作熱情不斷被激勵。 三步驟協助影像創作者輕鬆完成配樂工作 值得一提的是,目前NFT(Non-fungible token,又稱為非同質化代幣)在藝術及文化市場大行其道,影像音樂領域導入的可能性如何李姿慧表示,目前以太坊的交易手續費(gas fee)居高不下,加上她在洛杉磯參加多次聚會得到的結論,目前NFT接受度仍在醞釀中,然而,愛飛媒平仍看好NFT未來趨勢,在可預見的未來,仍會將相關技術導入AV Mapping平台,提供更多元化的交易方式。 為了快速擴充海外市場,李姿慧在舊金山不斷尋求國際策略性投資人挹注資金。同時,由於美國洛杉磯疫情控制得宜,產業逐漸復甦中,李姿慧也參加許多線下創作聚會。愛飛媒平希望成為連接影像與音樂的橋樑,在國際市場上導入知名的使用者案例,讓更多創作者看到平台的威力。 愛飛媒平也頻傳捷報,繼榮獲DSA數位廣告奇點銀獎、美國在臺協會與META合辦的AWE女性創業最佳潛力獎之後,李姿慧創辦的一站式AI影像音樂媒合平台AV Mapping也於2020年再度獲得德國紅點Read Dot Award設計大獎設計概念Design Concept的最佳設計獎Best of the best,希望持續以科技立足、以藝術為養分,支持音樂創作者創作出更好的作品。 愛飛媒平創辦人李姿慧榮獲多項國際大獎,是深具潛力的女性創業家

【解決方案】2秒鐘完成結帳動作 Viscovery AI影像辨識助攻智慧零售
1 秒鐘完成結帳動作 Viscovery AI 影像辨識助攻智慧零售

近年來,人工智慧 Artificial Intelligence,簡稱 AI 已逐漸改變各行各業的運作模式,不過,絕大部分的工作仍然是由人類完成,AI 則扮演輔助的角色,因而出現了「AI Copilot」一詞,代表「由 AI 驅動的工具或助理」,旨在協助使用者完成各種任務,提高生產力和效率。 AI Copilot 的概念源自於「副駕駛」這個角色,在飛行中,副駕駛協助主駕駛員完成各項任務,確保飛行安全與效率。其實,工業革命的「機器」就開始有 Copilot 的影子,各種機器在不同領域中扮演「Copilot」的角色,輔助人類完成繁重的體力和重複性工作,大幅提升工廠生產效率,推動經濟快速發展。 隨著運算設備的進步、機器學習、深度學習、影像辨識等技術的突破,AI Copilot 的概念逐漸成形。AI Copilot 的發展標誌著從「機器輔助提升到智慧輔助的轉變」。早期的機器人只能完成預設的重複性工作,而現在的 AI Copilot 則能夠學習和適應新的環境與任務,並在實際應用中不斷優化自身表現。這一轉變不僅改變了人機交互的方式,也為各產業帶來了深遠的影響。 AI Copilot 的應用範圍涵蓋了各個行業,包括:金融、醫療、製造、教育、零售hellip等等,無處不在。 AI Copilot 於零售業的應用:AI 影像辨識結帳 在零售業,AI Copilot 的應用已經開始展現具體成果。 以 Viscovery 的 AI 影像辨識結帳系統為例,這套系統即為 AI Copilot 模式的一種,輔助店員加速結帳,或者輔助消費者簡化自助結帳流程。 nbsp 一般的結帳方式需要店員逐一掃描商品條碼,若是無條碼的商品,如:麵包、餐點,則需店員花時間先用肉眼確認品項,再一個個輸入到 POS 結帳系統中。根據一家連鎖麵包店實測,資深店員從「肉眼辨識」到「輸入一盤 6 顆麵包的商品資訊到結帳系統」的過程,就要 22 秒的時間,新進店員需要的時間可能更多。另外,根據一家日本麵包店業者分享,培訓員工認識、熟悉商品需要 1 至 2 個月的時間。 nbsp 現在有了 AI 影像辨識技術,店員可以把「辨識商品」的步驟交給 AI,由 AI 扮演 Copilot 的角色,1 秒內迅速辨識品項,加快結帳,整體節省 50 的結帳時間,優化顧客購物體驗。而培訓員工辨認麵包的時間成本,也能因此有效縮短。 nbsp 即便是帶有條碼的商品,AI 也可以在一秒內快速辨識多個品項,相比逐個掃條碼的方式,效率更高 nbsp 而有 AI 影像辨識「輔助」的自助結帳系統,則能夠讓消費者在沒有店員幫助的情況下,順利完成購物,省去刷條碼或在螢幕上查找品項的麻煩,提升購物體驗,在缺工、找不到店員的時代,也幫助店家降低營運成本。 nbsp AI 快速辨識多件結帳商品只要一秒鐘 圖片來源:Viscovery 近來,致力研發 AI 影像辨識結帳方案的新創在各國嶄露頭角,目前已知最輕量化的解決方案就在台灣,只要在結帳櫃檯安裝一支 Viscovery 的鏡頭與一台搭載 Viscovery AI 影像辨識軟體的平板,即可與店家既有的 POS 結帳系統串接,馬上啟用。 整合方式多元,有隨插即用的作法,也有與店家 POS 整合的 API 串接方案。 Viscovery AI 影像辨識系統可與店家現有的 POS 系統無痛整合 圖片來源:Viscovery AI 影像辨識結帳的導入實例 目前 Viscovery AI 影像辨識系統已導入台灣連鎖烘焙店、新加坡中式麵店、日本仙台百貨公司商辦超商 micormarket、日本麵包店與蛋糕店hellip等等。超過 700 萬筆交易筆數,都是透過這套 AI 系統完成,辨識超過 4000 萬件商品。這些使用案例展示了 Viscovery AI 影像辨識系統在零售行業的廣泛應用,未來將持續深耕、探索零售及餐飲運用 Vision AI 的各種可能。 nbsp Viscovery AI 影像辨識系統已導入日本、新加坡、台灣,使用於麵包店、蛋糕店、餐廳、便利商店等多個場域 圖片來源:Viscovery