【110年 解決方案】 行動貝果讓AI像Excel一樣簡單高效 提升數據分析力

甚麼是AutoML(自動化機器學習),與ML(傳統數據分析)有何不同?需要先來進一步釐清。
傳統的機器學習必須經過資料清理、資料前處理、特徵工程、特徵選擇、演算法選擇、模型建立、模型訓練、參數調整,再到評估結果,產出模型應用。過程中,一但參數有問題,必須從新選擇演算法、重新建立模型等,來來回回重複上百次。若萬一有了新的資料,所有的步驟都要重走一遍。 透過自動化機器學習,模型應用的產出過程只需要經過資料清理、特徵工程、數據建模及模型評估等四大步驟的自動化,即可達到模型應用,即使需要蒐集新資料,也能透過自動化機器學習達成,省時又省力。
▲ML與AutoML之比較 資料來源:行動貝果有限公司
AutoML是一種能夠讓機器學習模型開發中耗時的反覆工作自動化的程序,這讓相對缺乏AI人才的中小型企業,也能自己打造客製化的機器學習模型。近年來,國際大廠紛紛搶入這塊市場,包括Google於2018年發表的Cloud AutoML,以及雲端運算龍頭AWS在2019年推出AutoPilot,AutoML已然成為主流學習服務的標準配備,從網頁化介面、免程式開發及工作流程視覺化管理等,服務發展面向越來越多元。
行動貝果(MoBagel )是一群由頂尖資料科學家、工程師、產品專案管理師組成的專業團隊,團員來自各地名校,包括美國史丹佛、柏克萊、牛津、台灣大學等,同時也曾獲選參與矽谷知名加速器500 Startup、獲選參加日本SoftBank Innovation Program、也在Nokia的Open Innovation Challenge中得名。
行動貝果Decanter AI平台,讓分析專案從兩個月縮短至兩天
行動貝果專攻資料科學和機器學習技術,在2016年研發自動化機器學習分析工具Decanter AI,迄今已幫助超過100家的企業將AI導入重要的決策中,分析專案從兩個月縮短到兩天。服務過的領域包含零售、電信、製造、金融等產業。
行動貝果有限公司副總經理林昱申表示,Decanter AI讓AI像Excel一樣簡單高效,可以提升企業數據分析生產力。使用者不需要先具備深厚的專業知識與經驗,透過簡單的超作介面,就能進行自動化機器學習來作資料分析與預測。
使用Decanter AI有簡單三步驟: 步驟一、將數據整理成csv格式 ;步驟二、上傳至DecanterAI設定預測目標 步驟;三、Decanter AI自動建模,獲得預測成果 。部署方式可以在公有雲,也可落地到企業端的私有雲,內部資料上傳之後,即可建模使用。
▲DecanterAI使用三步驟,簡單又方便
AutoML的優點是能夠自動化訓練大量模型、調整參數、產出最佳模型,快速部署、快速導入,在新冠肺炎病毒(COVID-19)疫情之後,各行各業面臨新的市場變局,必須透過快速、便捷的數位工具進行數位轉型。
行動貝果近年來,持續推動DecanterAI平台的優化與建立產業資料建模分析能力,並產生實質效果。如中華電信運用平台針對攜碼客戶進行盲測,並進行數據分析,有效降低用戶的離網率並提高客戶留存率。國內龍頭食品大廠,由於飲品有效期,加上冷鏈的生產與銷量情況必須完全整握,才能降低庫存與損耗等問題,在導入DecanterAI平台之後,除了可精準預測市場需求量,根據效期數據分析生產及配銷數量,也有助於降低倉儲物流成本。
AutoML產業應用多元廣泛 未來發展潛力大
行動貝果認為,AutoML在產業應用十分廣泛多元,包括製造業所困擾的員工離職預測、生產需量預測及營收績效預測;智慧零售業的門市客流預測、商品補貨預測、會員促銷預測;電信業的客戶流失預測、潛客名單預測;金融業的理財精準行銷、信用卡盜刷偵測及保險申辦快審,甚至於房地實價預測、停電災損預測等,都有助於解決產業的經營困境,創造新的商業模式。
▲AutoML產業應用多元,涵蓋製造、零售、金融等產業 資料來源:行動貝果有限公司
AutoML導入期需要花費多少時間與準備?林昱伸表示,在實際做法上,自動化機器學習企業導入進程包括四大期間:
一、 準備期:協同企業討論聚焦商業痛點,協助定義分析命題,並提供資料科學專業建議與最適解決方案,為期兩周左右時間。
二、 驗證期:以小範圍試點專案快速驗證分析成效,確保命題設定、數據品質、分析流程、預測技術等面向,作為後續實務應用與放大之基礎。需要花費三周時間。
三、 導入期:依企業需求支援雲端或本地端產品部署。提供操作與維運教學、Help Center、數據分析顧問諮詢、企業培訓課程等產品導入服務,需時一個月以上。
四、 應用期:分析/數據團隊可透過產品通用介面執行各項AI專案,快速落地。並可透過API串接預測引擎,依實務場景開發應用模組,此一為應用最後階段,耗費時間較多,需時長達數月之久。
然而,行動貝果與SI夥伴進行系統整合專案流程,由SI夥伴進行商業命題討論,及提供資料集,隨後進行資料健檢與Baseline模型,據此,行動貝果提供資料診斷報告,確認試點專案命題之後產出需求規劃書,就進入專案執行階段,模型建立、優化及提供分析報告。與SI業者進行系統整合,一方面優化處理模組開發,另一方面使用API串接數據源與輸出預測結果,導入企業的場域,有效解決企業在面臨數位轉型中的命題。
展望未來,Decanter AI平台上將持續開發各項AI創新應用服務,與產業上中下游如企業資源規劃(ERP)、顧客關係管理(CRM)、商業分析(BI)與電子商務平台(EC)等夥伴,以共創、共享與利他的方式極大化生態圈效益。
(本文源自於「AI Engineering線上小聚」內容精選整理)
推薦案例

某週四下午,下了一場傾盆大雨,然而,位於台北小巨蛋附近的洞見未來科技RelaJet台北體驗中心內,客戶預約全滿,主要是聽損人士前來試聽運用人聲分離引擎設計製造出來的助輔聽器,對於聽損人士而言,能夠有平價、輕巧、降噪效果佳的助輔聽器可用,真可謂一大福音。 「希望幫助有需要的使用者,再次聽見世界的精彩」這是同為聽損人士的RelaJet創辦人暨執行長陳柏儒體貼的期望,他最懂得聽損者的需求,也希望藉由洞見未來科技獨特的人聲增幅助聽技術,能夠造福更多的人。 萬元有找的輔聽器 造福廣大聽損者 成立於2018年的RelaJet,是陳柏儒與哥哥陳宥任共同創辦的公司。RelaJet所研發的多人聲分離引擎搭配高通藍牙音訊平台,將動輒8-10萬元的進口助聽器價格壓低到萬元有找,就是希望能研發平價、降噪效果佳、可運用無線傳輸連結手機的好商品。 公司成立後的前2年,主要研發多人聲分離引擎,讓降噪效果更佳,搭載上高通藍牙耳機晶片之後,音訊處理時間極短,大約7毫秒就能強化主要人聲、降低周圍噪音干擾,只需要傳統助聽器醫療標準16毫秒不到一半的時間,幾乎「零延遲」。 洞見未來科技推出平價助輔聽器,大大嘉惠聽損者 陳宥任解釋,主要是運用高通晶片的邊緣運算,加上極簡化的演算法才能做到極低延遲及聲音可以處理更好的降噪度,同時助聽器可涵蓋18個頻道,傳統的助聽器涵蓋的範圍是4-48個頻道,未來RelaJet會朝更多頻道逐步邁進。 根據統計,全球聽覺障礙者總計47億人,其中,已開發國家聽力輔具配戴率平均為30,其中以歐美國家最多。台灣有近150萬人失能性聽損,其中,中老年族群失能性聽損就佔了30,而輔具配戴率僅有10,比率相當低。 陳宥任進一步分析,輔具配戴率偏低有兩個原因,一、國際大品牌平均售價高達8-20萬元,可使用期限3年,不僅售價高、養護成本也高,讓很多人卻步;二、在吵雜環境下,噪音也被放大,使用者仍然不一定能聽得清楚,並且聲音參數無法即時、自由調整,需要常回到門市調校不是很方便。三、大部分機種無法連接手機,不方便聽損者接聽聽電話。 運用高通藍牙晶片 產品開發速度大躍進 有鑑於此,曾在聯發科擔任半導體工程師的陳柏儒負責技術研發,有法務背景的陳宥任主責公司的管理與營運,兄弟合作無間,組建團隊運用AI人工智慧演算法與晶片串接,學習數據庫內幾千小時的音檔,透過神經網路與深度學習技術,研發出低延遲、高降噪的人聲增幅助聽技術。並在2019年將此聲音處理技術整合至高通藍牙晶片,並獲得高通台灣新創競賽獲得冠軍、高通全球擴展計畫夥伴的榮譽,讓產品開發速度大躍進,2021年在台灣推出自有品牌Otoadd系列助輔聽產品,並受到市場的青睞以及有廣大聽損者的好評。 根據不同消費者的需求,有不同的產品設計,陳宥任表示,Otoadd具有輔聽功能的無線耳機N1,屬於頸掛式入門款,售價一副9,500元,可以一邊帶輔聽器一邊聽電話,運用手機App即可控制降噪強度及聲量大小。未來也將研發周邊配件,以符合年長者的需求。該輔聽器除了在台北、高雄體驗中心可預約試聽外,也可在PChome商城、台哥大myfone商城、樂齡網等輔具通路販售。 另一款為針對輕度到重度聽損者設計的Classic R助聽器,於2021年獲得日本Good Design設計獎,這款產品自去年底上市,對於先天性聽損者具有吸引力,用過的人都說在吵雜的環境下也能比過去聽得更清楚,也感受到藍牙連接手機通話、看影片的便利。預估此一商品也將在今年下半年外銷海外市場。 此外,今年6月即將上市的助聽器藍牙功能二合一功能產品,大小就如同一般藍牙耳機,主力客群鎖定在意外觀的聽損者,一方面體積較小、無線耳機造型設計美觀,加上也可接聽電話,若經衛福部許可上市之後,符合資格的聽損者還可以向政府申請補助。 RelaJet下一階段將進軍海外市場 以美國為灘頭堡 有趣的一個問題是,因應疫情關係,全民都必須配戴口罩,無法讀唇語,此對聽損者的影響是如何呢陳宥任表示,此時就能凸顯RelaJat的優勢了。由於每位聽損者聽力強弱不同,助聽器僅能補充到適當音量,協助聽損者聽取6-7成內容,餘3成仍須仰賴讀嘴唇及手勢。而在疫情期間,為了防疫,人人都戴口罩,口罩也讓聲音有所遮蔽,RelaJat人聲分離引擎也能校正補強,使戴口罩者的聲音分離清晰,方便聽損者辨識。 除了台灣市場之外,RelaJet下一階段將進軍海外市場,預計今2022年將取得ISO 13485醫材品質管理系統認證及美國醫療器材許可證,以美國為灘頭堡,以自有品牌或是成品貼牌方式銷售海外。 除了台灣市場之外,RelaJet住輔聽器下一階段將進軍美國市場

隨著後疫情時代來臨,全球遠距醫療發展方興未艾,促使智慧醫療技術在去中心化醫療需求大增。其中,行動醫療裝置若能提供真實世界居家或院外數據供醫院使用,相信必能減輕醫師或醫療人員診療負擔,降低健保支出。為此,奇翼醫電Singular Wings Medical推出遠距醫療保健整體解決方案,結合卓越穿戴式行動醫療裝置設計、創新軟體研發、AI演算法及雲端平台服務,將成為遠距醫療當中最後一塊拼圖。 奇翼醫電創辦人暨總經理李維中David Lee表示,當時創業初衷是因為親身目睹台灣長久以追求低成本的大量生產,導致產業的價值不斷下降,舉例來說,三十年前矽谷的產值與台灣新竹科學園區差不多,但在三十年後,矽谷產值在2020年年底達到14兆美金,而新竹科學園區在2021年年底還不到15兆台幣。看見矽谷對產業需求的敏銳度和破壞式創新如Uber, Airbnbhellip產業趨勢及後疫時代帶動遠距醫療服務大增,進而創造高產業價值,因此在45歲時創業,構思如何結合台灣十幾年累積產業優勢和矽谷的創新模式,決定透過醫療產業、ICT技術產業和創新商業模式整合,幫助台灣產業升級,找出全新的道路。看見台灣在醫療產業與電子電機產業一向是最菁英的人才匯集之處,相信透過兩者結合,再加上創新的商業模式,就可以有機會像矽谷看齊,做出不一樣的事業。 依據台灣通訊診察治療辦法,台灣在遠距醫療的市場需求上,分為緊急如COVID-19和特殊必要如離島或後山等地理特殊位置等兩種現況,允許進行通訊醫療診察。實際上,全球遠距醫療去中心化醫療發展正方興未艾,但對於滿足去中心化醫療的智慧醫療技術需求仍有待實現,除了醫療技術缺口,也包含看診金流、患者身分辨識、遠距問診收集,促使智慧醫療技術的推波助瀾。李維中觀察,遠距醫療去中心化醫療能成功落地,最好透過院外或居家使用,且日常生活中輕易取得的遠距醫療裝置。其中,裝置的數據是關鍵,能提供醫師可相信和應用的院外真實世界數據Real World Data或 Real World Evidence,才得以精進診療手段。實際上,這類型的遠距醫療裝置並不普及,導致遠距醫療照護不容易完成。另外,隨著手環手錶類的穿戴裝置增加,但這類裝置能真正能提供的資料多半不足以做為醫療用途且不容易確效Validation and Verification。李維中表示,健康意識越來越受到人們重視,對於遠距醫療裝置是正面鼓勵,相信只要有適當的商業模式,找到正確方式與醫院、醫師合作,減輕醫師或醫療人員負擔,降低健保支出,奇翼醫電必定有機會可成為遠距醫療當中最後的那一塊拼圖。 成立於2015年的奇翼醫電,其核心團隊包含來自醫工與資訊背景的年輕工程師和經驗豐富的創業家等22位多元化專業人才組成,共同致力打造遠距醫療保健整體解決方案,包含行動醫療裝置Beatinfor Health心電圖傳感器之硬體設計、軟體研發及後台雲端平台服務。基於心電圖ECG是人體最重要的生命徵象體溫、脈搏、呼吸和生理數據之一,其可反應出人體的各種生理變化,例如心血管健康、發炎、感染、出血、受傷或焦慮的指數變化。為此核心概念,奇翼醫電致力以穿戴式心電圖為核心技術,同時採集心電圖等重要生命徵像和環境參數,構建基於大數據、機器學習AI演算法系統和後台雲平台服務,幫助解決遠距醫療中最重要的心血管疾病、睡眠問題、新陳代謝疾病等特定慢性疾病。 心電圖傳感器 連續性生理數據監測 降低急性心臟衰竭病人出院後30天內11死亡風險 為實現遠距醫療服務,奇翼醫電推出整套遠距醫療保健整體解決方案,包含穿戴式行動醫療裝置-心電圖傳感器BEATINFO ECG、必應健康BEATINFO HEALTH APP、AI演算法、網頁及必應健康BEATINFO HEALTH雲端服務平台組成。BEATINFO ECG 傳感器為 BEATINFO HEALTH APP健康雲端平台專屬配備,充飽電可連續使用 40 小時,裝置輕巧僅15g,此傳感器可透過貼片或胸帶方式,來收集使用者的心電圖、呼吸、皮膚溫度、身體動作姿態和環境參數。目前BEATINFO ECG 傳感器擁有美國、台灣專利8項,並於2017年榮獲2次德國iF設計大獎。 行動醫療裝置-心電圖傳感器可提供連續性生理數據監測 在整體技術特色上,必應健康BEATINFO HEALTH雲端服務平台具備連續性、遠距、即時性與動態性等四大關鍵的生理數據偵測特性。在操作上,使用者可於Android 或iOS系統下載必應健康BEATINFO HEALTHAPP,其介面可提供生理數據狀況、健康評估報告訂購如一日睡眠評估報告或心血管健康評估報告、高強度運動測驗的心血管評估報告、第三方遠距醫療諮詢服務等功能。使用者透過貼片式或胸帶方式的心電圖傳感器搭配端雲端平台進行連續性的生理偵測,在傳輸到雲端進行進一步計算之前,所有數據都將先被去識別化處理,並可供專業數據報告供醫生判斷。必應健康BEATINFO HEALTH雲端服務平台具備強大的雜訊濾波處理能力與快速的波形識別判斷以及高複雜度雲端架構與通訊技術。為什麼雜訊濾波處理能力如此重要 因為一般醫院內的醫療器材必須要求使用者以靜態情況下完成短時間的量測,通常院外生活情境下資料是醫院所蒐集不到的,而這個資料對醫師了解病程進展與離院病人情況又顯得日益重要。因此,若在日常生活狀態下持續記錄非常微弱的心電圖信號,其實需要克服非常高的技術門檻,當這些信號經過雜訊處理之後,會先經過AI演算法判斷,才可初步的快速結論,讓使用者可即時避免某些致命的風險。雲端架構則是提供了更深一層的第二階運算,也涵蓋了商業模式架構,提供之服務模型例如使用者管理、自動報告產生、記錄保存、警報通知以及串接更多服務如第三方警急救援、第三方醫療諮詢、醫生和病人對接、看診金流等功能。 業界競爭優勢上,相較於業界手環手錶類產品,奇翼醫電的心電圖傳感器BEATINFO ECG提供精準的醫療等級量測,可連續不間斷的紀錄收集生理數據,提高任何突發性或偶發性的病徵機會。與同業的心電圖貼片比較上,則提供了即時的資料回傳與網頁版的管理工具,並且可以產出各種報告,供管理者在網頁上遠距管理大量的使用用戶。根據北醫統計,急性心臟衰竭病人在出院後30天內死亡率高達11,若透過心電圖傳感器配置於病患達30天連續不間斷的即時監控,有機會可降低部分死亡風險,同時也能大幅降低健保的支出。此外,在心血管疾病的情況下,若用戶佩戴該設備一段時間,則可獲得定期的心血管評估報告,並供醫生進行後續深入檢查。 除了心血管疾病的量測外,心電圖傳感器配置可提供睡眠呼吸中止症OSA居家評估,量測中患者可從中發掘出潛在且容易忽略的心血管疾病,用戶無需在睡眠病房度過乏味的夜晚,透過心電圖傳感器的貼片和AI演算法,患者只需在家睡一晚即可收到 OSA 測試報告。如果需要,醫生可以通過任何互聯網瀏覽器遠程即時獲取患者的病情。因此,藉由心電圖傳感器穿戴服務,使用者可從量測過程中發掘出隱性且不知道的心血管疾病如猝死相關的心律不整問題,以避免不必要的憾事發生。 奇翼醫電的商業模式,以B2B2C為主,希望協助個人、醫院、企業、照護服務等單位,創造多贏格局。李維中分析,商業合作模式相當彈性化,無論是租賃或買斷方式的穿戴量測裝置,或是為降低使用者購買裝置的成本,提供以年計費的報告訂閱制,例如包含2分鐘心電圖、7日心血管健康評估、運動心血管健康評估、睡眠健康評估報告等彈性化的訂閱組合。 群組心血管監控系統解決方案 打造多對多的即時生理資訊監控平台 以預防代替診斷 除了提供給個人用戶進行遠端行動化生理數據量測,BEATINFO雲端平台,提供「群組心血管監控系統」解決方案,透過網路技術,可打造多對多的即時生理資訊監控平台,病患只需配戴輕便的監控貼片,後端系統即可掌握其生理資訊的變化,以預防代替診斷,降低心血管猝死的機率。此平台提供3項功能,包含可分群分組分階層管理不同的用戶,用戶人數可達數萬人之多;可在網頁工具上即時顯示用戶的基礎生理資訊,在某些特定的預設條件被觸發時,此平台會即時發出警報;也可以在平台上回溯歷史資料,非常適合醫師在問診的時候,查看病人在院外的病程發展。 對於「群組心血管監控系統」解決方案的應用上,以高強度運動為例,例如長距離的跑步與自行車、登山健行活動或出國旅行等,都需提供事前的心血管健康評估活動,以及相應的評估報告。此報告可以讓使用者與醫師分享,以利參賽者於活動前做好評估,或是檢驗自己的訓練成效,在事前就可大幅降低活動進行過程的意外風險。在活動過程當中,群組心血管監控系統也提供大量參與者的即時現場監控,可以在運動的當下,由後台的AI即時監測,一旦有意外發生,平台可以立即發出警報,甚至可以通報意外發生地點的GPS定位,並且在搜救時持續傳回使用者的生理資訊,爭取黃金搶救時間。 在運動監測應用上,以高爾夫球為例,該如何提升高爾夫球選手推桿擊球表現呢選手的表現和專注力通常與個人情緒穩定性有直接關係。李維中表示,藉由奇翼醫電的心電圖裝置在HRV分析,可協助判斷選手的情緒和壓力指數表現,同時有助於高球教練進行選手的選拔與訓練。 群組心血管監控系統可打造多對多的即時生理資訊監控平台 在台灣站穩腳步 邁向美歐市場 朝向數據公司目標邁進 面對技術研發與市場推展的挑戰上,奇翼醫電在心電圖的自動判別需要大量的數據供AI演算發使用,為此,奇翼醫電必須與醫院進行合作,共同開發才能夠完成。目前公司已經與許多醫學中心與研究單位有很好的合作關係,逐一克服了這些技術瓶頸。在市場推展上,李維中表示,奇翼醫電面對最大挑戰是要與市場溝通,讓大眾了解在競爭對手的手環手錶類產品與公司的行動裝置-心電圖傳感器差異性在哪裡。相較於市面常見的手環手錶類產品以非連續性方式蒐集心電圖資料,可能需長時間非連續性資料蒐集才能看運氣的發現潛在心血管問題,奇翼醫電積極向大眾推廣心電圖在連續性偵測資料的競爭功能特性,並強調能協助很多潛在疾病的檢出是非常重要的手段,以預防代替診斷,降低不必要心血管疾病機率發生。另外,業務推動上,也希望透過法人資策會協助下創造更多業務媒合和新創募資的機會。 展望未來,李維中期許奇翼醫電能成為遠距醫療在健康穿戴裝置-心電圖服務的最後一塊拼圖。李維中表示,短期奇翼醫電希望夠在台灣站穩腳步,成為人人家中常備的醫療器材,如同溫度計、血壓計一樣。公司也不斷地在開發新的適應症,由心電圖出發,加上AI與大數據,可以應對更多的慢性疾病,除了心血管疾病之外,我們也陸續開發了睡眠呼吸中止症與其他更特別的應用,瞄準的都是現代人非常有可能會遇到的年老慢性病的問題。中長期布局,奇翼醫電將進軍美國與歐盟市場,邁向國際性的公司,並持續以成為數據公司為目標,善用公司長久蒐集的數據應用,提供從新藥開發、疫苗發展等多元領域應用,以創造商機與獲利。

品質檢測,如雙刃劍一直是台灣製造業者又愛又痛的課題。當AI深度學習進入傳統製造業的工業視覺檢測中,不僅可節省檢測人力投入、解決人工目視標準不一,克服傳統自動光學檢測AOI有限的視覺辨認及瑕疵檢測盲點,更能即時溯源品質問題成因。小柿智檢研發的AIAOI視覺檢測整體解決方案,融合軟體與硬體創造高效外觀瑕疵檢測能力,幫助電子代工客戶創造低於1漏檢率及少於3過殺率的高效品檢水準。 成立於2020年的小柿智檢,雖然是兩年的新創但並非從零開始,創辦人暨執行長洪沛駿與核心團隊曾深入富士康工廠多年,參與無數智慧工廠相關解決方案與製程改善,擁有深厚的AI深度學習開發能量,並累積世界級AI應用落地豐富經驗。看見AI工業檢測必定是製造業邁向工業40的最後一哩路,洪沛駿毅然決定將AI深度學習技術落地於產值高的智慧製造領域,並專精投入在AI工業視覺檢測開發。 對於製造業而言,產品檢測是所有品管最重要的一環,但傳統工業檢測面臨2大主要痛點 1人工目視檢測:現今整體製造業95以上仍仰賴人工目視檢查,使得人工目視品檢標準難一致性,並對細微物件目視檢測時,如被動元件或高反光元件會造成長期視力傷害。2傳統AOI自動光學檢測:對產品有限的視覺辨認能力與瑕疵檢測盲點,而其中外觀瑕疵檢測如碰刮傷、油汙、髒汙或毛絲等不可預期的細微瑕疵問題,也是AOI應用中一直無法克服的難關。 AIAOI視覺檢測整體解決方案 外觀瑕疵檢測的一大福音 當初在設計小柿智檢產品roadmap時,客群定位及強化客戶產品服務與價值是重要指標,更看見外觀瑕疵檢測一直是製造業未能解決的痛,洪沛駿表示。小柿智檢以工業品檢AI軟體為核心,提供AIAOI視覺檢測整體解決方案,主推三大產品,包含「QVI-T AI深度學習檢測建模平台軟體」、「AI六面瑕疵檢測篩選機」及「AI工業品檢平台」。主要服務客群以產能高、毛利率高的半導體封測、EMS電子代工、小金屬件加工等產業為主。針對客戶需求,小柿智檢提供對應的軟硬體服務,結合自主開發的AI深度學習軟體與硬體品檢設備,減輕產線人工目視負擔,有效提升工廠的生產品質。 為了幫助設備商及有開發能力技術工程師精準掌握產品外觀瑕疵檢測,小柿智檢自主開發QVI-T深度學習檢測軟體,可提供客戶瑕疵定位、瑕疵分類、瑕疵分割、異常檢測以及文字辨識等重點功能,有別傳統套軟體的固定的檢測法,可以根據不同產業檢測方式精進演算法,開發不同API以串接不同鏡頭的設備。此平台軟體設計非常輕量,架構在公有雲私有雲的SaaS軟體,主要是單純圖片上傳、做標記、訓練建模、驗證測試,完畢後提供使用者下載模型、SDK、API和報告,可有效幫助客戶達到AI推論功能。 目前市面工業檢測服務,以傳統AOI軟體工業檢測機居多,僅能解決產品輪廓量測如扣件的頭、長度等,無法真正提供細微商品表面瑕疵檢測如螺絲頭裂痕及牙傷,而市場上正缺少這種高精密瑕疵檢測業者,洪沛駿觀察。小柿智檢開發自主打造「AI六面瑕疵檢測篩選專用機」從過去客製化服務到現階段提供客戶標準化服務,提供扣件類在量測和表面瑕疵一次解決的標準化檢測服務,以及被動元件類產品高速表面瑕疵檢測。此專業機運用小柿智檢自主研發的AI深度學習AOI複合算法技術,透過可平行運算技術,可實現模型推論達3毫秒張,及實現被動元件之電極與本體多重複雜瑕疵檢出,此專業機主要落地於從扣件類、小金屬件到被動元件之檢測。 業界競爭力方面,AI六面瑕疵檢測篩選專業機提供的軟體硬體整合是小柿智檢重要核心競爭優勢,並非字面如此簡單,洪沛駿有感而發表示,此專機在工業檢測行業俗稱光學機構、電控、軟體及算法等領域高度集成整合,過程中需要不斷優化疊代,並需多次去客戶端驗證與修改,經長期千錘百鍊後,技術門檻也因此拉高。AI六面瑕疵檢測篩選專業機將是小柿智檢未來3-5年主力產品推動方向,相信AI結合量測技術和表面瑕疵檢測會是小柿智檢重要的核心競爭力來源,洪沛駿表示。 AI六面瑕疵檢測篩選專業機將是小柿智檢未來3-5年主力產品推方向 面對智慧工廠工業40蓬勃發展,常收到客戶詢問「品檢的數據是否有二次使用價值」,洪沛駿表示,小柿智檢推出的「AI工業品檢平台」具備機器學習機制,可藉由品檢數據二次使用,提供客戶生產品質即時監控預警、品質溯源分析、品質因子評估、製程參數預測與推薦多項功能。以成功導入汽車零組件廠為例,透AI工業品檢平台提供的製程參數預測與推薦,當我們知道產品瑕疵,依過去老師傅經驗建成一套model,再加上前段過來的接網數據,整合後我們有製程數據、來料數據、品檢數據之後,我們可以去預測這些機台參數是否跑掉,我們就可以去推薦某幾段的製程參數是否調高或調低。透過AI工業品檢平台,小柿智檢能幫助客戶將視覺品檢結果、製程數據及驗收標準,跟客戶工廠既有的MES系統對接,以提升生產品質,改善效率,降低成本。 在商業模式方面,小柿智檢在深度學習檢測建模平台軟體也提供軟體訂閱制,提供公有雲客戶以流量訂閱並依圖片上傳量進行收費,而使用私有雲客戶則採取每年授權金license收費機制。此外,公司也提供客戶在整體解決方案設備的買斷收費機制,並提供一年保固,之後每年收取耗材與軟體更新維護費。 反其道而行 軟硬兼施 小於1漏檢率15分鐘快速建模 面對製造業各樣少量多樣品檢需求,一般AI深度學習視覺檢測,通常要求客戶蒐集大量不良產品照片,既耗時標記,又造成客戶導入AI不順暢,不良品蒐集不到,導入周期長,落地充滿風險,不良樣品不夠始得模型不夠準。小柿智檢卻反其道而行,讓其產品「AI視覺檢測模型開發工具」透過客人提供的良品圖片進行訓練模型。讓AI學習良品相對容易,不需要標註,可快速壓縮時間完成建模。 以IPC電子業-研揚科技的落地應用為例,為了降低PCBA產線的品檢站人力投入並有標準化的品檢品質,小柿智檢提供PCBA AI視覺檢測軟硬體整體解決方案服務,並於工廠高自動化的流水線上進行in-line檢測,有效節省檢測人力投入,提升品檢率的標準化,改善人工目檢測造成標準不一問題。透過AI視覺檢測軟硬體整體解決方案導入,有效替客戶近兩年維持過殺率3以下,達到漏檢率小於1的高成效表現。另外,本方案提供不懂AI的從業人員可快速操作建模,透過安裝建模tool在設備上,當客戶有新的貨號需要建立模型時,僅須提供10張良品圖片在設備下掃描,只要15分鐘即可快速訓練建模。 在產品核心策略布局上,相較市場競爭對手單靠通用軟體服務搶佔所有製造業市場,但套用在工業檢測是行不通的,洪沛駿過去10年觀察,相信唯有軟體硬體才有技術門檻,並專注在一個行業與領域,採用標準化公司的AI六面瑕疵檢測篩選專用機才能夠複製與規模化,才能真正讓公司不斷邁向優化與創造產品競爭力,即使有其他競品想爭奪這塊餅也不容易,洪沛駿表示。 小柿智檢的AIAOI視覺檢測整體解決方案為客戶創造快速建模 和小於1漏檢率的優異成效 布局全球、最有競爭力的AIAOI整體解決方案商 對新創者而言,面對商務拓展,天天都是挑戰,洪沛駿表示,公司規模小容易被大公司搶單、公司人才被高薪挖腳,缺乏深厚客戶關係,業務團隊不夠龐大等。如何克服呢洪沛駿相信唯有勤能補拙、提供更好服務、更即時反饋、創造更專業的方案去說服客戶,才是新創公司致勝的關鍵和競爭力。 從2020年創業至今,小柿智檢在商品核心策略佈局上總是反其道而行的超越同業競爭市場,積極在AI視覺檢測軟硬體整體解決方案向下扎根。洪沛駿期許小柿智檢未來將成為提供電子行業、半導業全球最具競爭力的AIAOI整體方案商,並提供最頂尖的AIAOI專業機設備給電子行業、半導體業客戶群。洪沛駿表示目前公司的AI六面瑕疵檢測篩選專業機技術能量已達到國內頂尖水準。為加速專業機研發更標準化並銷售到海外市場,現階段公司將進行募資計畫,希望借助資策會等法人協助進行更多商業串接與募資管道。對於中長期目標,小柿智檢將布局全球市場包含大陸和東南亞國家,同時跟隨OEM大廠的國際腳步全球布局,並在目標檢測項目下,持續發展特色產品及邁向國際場域擴散。