:::

【110年 解決方案】 行動貝果讓AI像Excel一樣簡單高效 提升數據分析力

甚麼是AutoML(自動化機器學習),與ML(傳統數據分析)有何不同?需要先來進一步釐清。

傳統的機器學習必須經過資料清理、資料前處理、特徵工程、特徵選擇、演算法選擇、模型建立、模型訓練、參數調整,再到評估結果,產出模型應用。過程中,一但參數有問題,必須從新選擇演算法、重新建立模型等,來來回回重複上百次。若萬一有了新的資料,所有的步驟都要重走一遍。 透過自動化機器學習,模型應用的產出過程只需要經過資料清理、特徵工程、數據建模及模型評估等四大步驟的自動化,即可達到模型應用,即使需要蒐集新資料,也能透過自動化機器學習達成,省時又省力。

ML與AutoML之比較    資料來源:行動貝果有限公司

▲ML與AutoML之比較 資料來源:行動貝果有限公司

AutoML是一種能夠讓機器學習模型開發中耗時的反覆工作自動化的程序,這讓相對缺乏AI人才的中小型企業,也能自己打造客製化的機器學習模型。近年來,國際大廠紛紛搶入這塊市場,包括Google於2018年發表的Cloud AutoML,以及雲端運算龍頭AWS在2019年推出AutoPilot,AutoML已然成為主流學習服務的標準配備,從網頁化介面、免程式開發及工作流程視覺化管理等,服務發展面向越來越多元。

行動貝果(MoBagel )是一群由頂尖資料科學家、工程師、產品專案管理師組成的專業團隊,團員來自各地名校,包括美國史丹佛、柏克萊、牛津、台灣大學等,同時也曾獲選參與矽谷知名加速器500 Startup、獲選參加日本SoftBank Innovation Program、也在Nokia的Open Innovation Challenge中得名。

行動貝果Decanter AI平台,讓分析專案從兩個月縮短至兩天

行動貝果專攻資料科學和機器學習技術,在2016年研發自動化機器學習分析工具Decanter AI,迄今已幫助超過100家的企業將AI導入重要的決策中,分析專案從兩個月縮短到兩天。服務過的領域包含零售、電信、製造、金融等產業。

行動貝果有限公司副總經理林昱申表示,Decanter AI讓AI像Excel一樣簡單高效,可以提升企業數據分析生產力。使用者不需要先具備深厚的專業知識與經驗,透過簡單的超作介面,就能進行自動化機器學習來作資料分析與預測。

使用Decanter AI有簡單三步驟: 步驟一、將數據整理成csv格式 ;步驟二、上傳至DecanterAI設定預測目標 步驟;三、Decanter AI自動建模,獲得預測成果 。部署方式可以在公有雲,也可落地到企業端的私有雲,內部資料上傳之後,即可建模使用。
 

DecanterAI使用三步驟,簡單又方便

▲DecanterAI使用三步驟,簡單又方便

AutoML的優點是能夠自動化訓練大量模型、調整參數、產出最佳模型,快速部署、快速導入,在新冠肺炎病毒(COVID-19)疫情之後,各行各業面臨新的市場變局,必須透過快速、便捷的數位工具進行數位轉型。

行動貝果近年來,持續推動DecanterAI平台的優化與建立產業資料建模分析能力,並產生實質效果。如中華電信運用平台針對攜碼客戶進行盲測,並進行數據分析,有效降低用戶的離網率並提高客戶留存率。國內龍頭食品大廠,由於飲品有效期,加上冷鏈的生產與銷量情況必須完全整握,才能降低庫存與損耗等問題,在導入DecanterAI平台之後,除了可精準預測市場需求量,根據效期數據分析生產及配銷數量,也有助於降低倉儲物流成本。

AutoML產業應用多元廣泛 未來發展潛力大

行動貝果認為,AutoML在產業應用十分廣泛多元,包括製造業所困擾的員工離職預測、生產需量預測及營收績效預測;智慧零售業的門市客流預測、商品補貨預測、會員促銷預測;電信業的客戶流失預測、潛客名單預測;金融業的理財精準行銷、信用卡盜刷偵測及保險申辦快審,甚至於房地實價預測、停電災損預測等,都有助於解決產業的經營困境,創造新的商業模式。

AutoML產業應用多元,涵蓋製造、零售、金融等產業     資料來源:行動貝果有限公司

▲AutoML產業應用多元,涵蓋製造、零售、金融等產業 資料來源:行動貝果有限公司

AutoML導入期需要花費多少時間與準備?林昱伸表示,在實際做法上,自動化機器學習企業導入進程包括四大期間:

一、 準備期:協同企業討論聚焦商業痛點,協助定義分析命題,並提供資料科學專業建議與最適解決方案,為期兩周左右時間。

二、 驗證期:以小範圍試點專案快速驗證分析成效,確保命題設定、數據品質、分析流程、預測技術等面向,作為後續實務應用與放大之基礎。需要花費三周時間。

三、 導入期:依企業需求支援雲端或本地端產品部署。提供操作與維運教學、Help Center、數據分析顧問諮詢、企業培訓課程等產品導入服務,需時一個月以上。

四、 應用期:分析/數據團隊可透過產品通用介面執行各項AI專案,快速落地。並可透過API串接預測引擎,依實務場景開發應用模組,此一為應用最後階段,耗費時間較多,需時長達數月之久。

然而,行動貝果與SI夥伴進行系統整合專案流程,由SI夥伴進行商業命題討論,及提供資料集,隨後進行資料健檢與Baseline模型,據此,行動貝果提供資料診斷報告,確認試點專案命題之後產出需求規劃書,就進入專案執行階段,模型建立、優化及提供分析報告。與SI業者進行系統整合,一方面優化處理模組開發,另一方面使用API串接數據源與輸出預測結果,導入企業的場域,有效解決企業在面臨數位轉型中的命題。

展望未來,Decanter AI平台上將持續開發各項AI創新應用服務,與產業上中下游如企業資源規劃(ERP)、顧客關係管理(CRM)、商業分析(BI)與電子商務平台(EC)等夥伴,以共創、共享與利他的方式極大化生態圈效益。

(本文源自於「AI Engineering線上小聚」內容精選整理)

推薦案例

【解決方案】滴水不漏的智慧工安巡檢 鑫蘊林科Linker Vision的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄
滴水不漏的智慧工安巡檢 鑫蘊林科(Linker Vision)的影像分析AI平台 創造巡檢時間從100分鐘降至3秒新紀錄

隨著智慧製造崛起,帶動高風險產業如化工、能源、電業在工安巡檢之需求。以化工產業在管線巡檢為例,高度仰賴人工定期巡檢監控,缺乏專業AI團隊的智慧監控,不僅費時耗力,恐造成員工在各樣工安環境意外風險。鑫蘊林科開發的影像分析AI平台不僅提升員工人身安全,降低危險因素,更讓人力肉眼巡檢管線異常的時間從平均一次100分鐘,大幅降低至3秒鐘的驚人成效。 鑫蘊林科股份有限公司Linker Vision的創辦人兼董事長謝源寶(Paul Shieh)表示「美國整體的科技發展與進步正源自於創業,鑫蘊林科在台創業初衷至今,期待藉由過去自己在美國創業打拼經驗,將美國創業精神和文化引介至台灣正萌芽的創業沃土中且能真正落實茁壯。」美式創業文化鼓勵員工重視ownership價值就是強調員工視自已為公司擁有者一份子,以捨我其誰的工作態度與精神,公司成就即為自己的成就,打破原本雇主與員工關係,而公司對表現傑出員工給予股票作為報酬,一同共享榮耀,建立與員工如partnership般合夥人關係。反觀台灣在創業文化與經營上仍有努力的空間,保有傳統的雇主與員工思維,期待將鑫蘊林科在台灣建立美式創業文化與價值能拋磚引玉以帶動更多國內新創企業跟進,進而升級軟體AI新創業的經營體質,才能破繭而出,走出國際。 面對市場國際業者大多數以開發AI模型及演算法為主軸,相對在投入數據為中心的Data-CentricAI服務的意願則不高,認為如2D 或3D大量資料處理相當費時又耗力。看見AI技術缺口並在微軟鼓勵下,鑫蘊林科多年前決定全力投入於Data-Centric的AI技術布局與深根,並專精在資料處理、過濾及精準度等方面的技術能量,也因此與微軟成為AI技術供應的重要合作夥伴關係。另外,在產業需求缺口,國內大廠,其強項為化工製造,在廠內管線巡檢,仍高度依靠人力進行監控,耗時又耗力。然而,為迎合產業AI化,業主將原本從事Database管控之IT部門改組為AI團隊,但礙於業主缺乏對AI軟體技術、AI模型及相關domain know-how之專業經驗,而造成業主導入AI落地到化工產業的工安監測更是挑戰重重。 全球首創AI自動標註技術 超越人工標記 視覺辨識物件準確率高達95以上 在AI技術能量上,鑫蘊林科推出全球首創的自動標註Auto-labeling與自動機器學習為雙核心創新技術,創造出有效率及穩定的影像分析AI平台,以提供客戶最先進完整的AI解決方案。在自動標註方面,此AI技術可克服深度學習中最困難的挑戰,也就是提供客戶最高品質的訓練資料。以自駕車為例,如何讓一台自駕車能有效辨識另一台車,這正是標註的重要性。過往標註方式,首先需蒐集數百萬輛車輛、道路、號誌、行人的數位圖像,並花費大量人力投入,每次以手動標註一個圖像,耗時耗力,人力成本高效率又低。透過自動標註AI技術,結合自動機器學習來自動標註數位圖像,AI可將人為錯誤標註排除在外,然後將正確的數據丟到車輛的大腦以進行車輛辨識。相較於人工標註準確率只有60,用AI自動標記與辯示物件的準確率可高達95以上,更可降低大於80手動標註的時間,節省掉至少80人力成本。 AI自動標記使用於高空作業的AI行為辨識 在自動機器學習部分,鑫蘊林科建立 AI視覺模型具備持續學習能力以適應資料變化,透過優化整體開發流程,從AI資料攝取及篩選Data Selection、AI標記AI Labeling、模型訓練及驗證、到佈署及監控,讓 AI 電腦視覺能更快速簡易地持續學習。自動機器學習目前可應用於不同的商業案例如 物件辨識與計數、人員進出安全偵測、商品瑕疵檢測、人流辨識、貨架商品端缺等。 看準國內業者如台積電、台塑和鴻海朝向智慧化AI管理並購置大量攝影機以順應工安監控的影像辨識需求,加上客戶既有組織對AI應用的不熟悉所造成的導入門檻以及影像辨識的前期準備如數據篩選、標註等繁複的作業流程,為此,近年鑫蘊林科致力加速AI電腦視覺應用的開發,提供客戶端對端服務,並且可依照客戶需求,彈性部署於雲端、地端、或是雲地的完整自動化AI解決方案服務。謝源寶表示,AI自動化技術流程透過客戶給予領域型的圖片,提供數據篩選Data Selection的AI技術,幫助客戶從大量如1百萬筆數據中自動篩選出精準如1萬筆數據,並藉由自動化標註Auto-Labeling的AI演算法技術取代人力標註有效替客戶省去大量人力成本,達到高效率的資料標註處理。此外,自動化機器學習的AI技術可幫助客戶端在工廠環境變化時仍能客製化AI自動模型訓練或重複訓練,提供更精準的AI模型並允許客戶可自主性操作。透過上述鑫蘊林科所提供自動化AI技術之重點特色與優勢,相信絕對可滿足客戶在自動化端到端AI自主學習平台的需求,同時可為客戶大幅省去AI團隊編制成本。 在技術競爭力方面,除了提供化工產業在智慧工安結合AI影像分析應用外,謝源寶表示,鑫蘊林科更可將自動標註與自動化機器學習的流程應用延伸於不同產業落地服務如自駕車、智慧倉儲自走機器人及未來智慧城市的自駕巴士等多元領域,其領域皆符合移動即服務Mobility as a Service之自動化移動精神,期待透過鑫蘊林科扮演的角色,可承攬不同產業進行圖片標註的流程,加速不同領域發展影像辨識服務的效率。相信透過提供客戶端對端AI解決方案及整套從Data Selection的AI技術、自動化標注Auto-Labeling的AI技術及自動化機器學習的AI技術等自動化AI影像分析的前期作業流程可大大滿足客戶在AI自主學習平台的需求。 影像分析AI平台 刷新從100分鐘降至3秒的智慧工安巡檢新紀錄 看見近年高危險產業如化工業者在工安監督的高度需求,鑫蘊林科推出「影像分析AI平台」Vision AI Platform,運用AI影像辨識技術,主要功能包含即時AI串流偵測、事件通知、定義客戶專屬的AI模型與持續學習等四大功能。在即時AI串流偵測部分,Vision AI系統可透過客戶的廠區攝影機結合AI模組進行即時AI影像事件的串流偵測,可協助客戶管理各種不同作業及廠區環境,並隨時隨地掌握各種工作情況;在事件通知方面,Vision AI平台可提供網頁版或APP方式或LINE即時通訊軟體提供客戶當時事件的影像紀錄,讓團隊不錯過任何事件,保持日常產能並減少意外;在定義客戶專屬的AI模型方面,可提供各樣的基礎AI模型,包含8款偵測場景電子圍籬、個人安全裝備、施工安全設備、施工作業、人員計數、畫面可用性、煙霧偵測、管線鏽蝕毀損、違規堆放供不同產業使用,客戶不需花時間寫程式,即可建立專屬的AI模型;在持續學習部分,Vision AI系統可提供客戶在AI模型的表現和精準度,隨著環境變化具備持續學習能力。 Vision AI具簡易使用者介面,直覺化操作,對於跨領域的產業,此平台具備自動化又彈性的AI能力,客戶不需花時間撰寫程式,即可建立由自主定義的AI模型,且Vision AI賦予AI模型持續學習和精進的能力,讓客戶可省去編制AI團隊的人力成本。此外,平台能大幅降低作業安全管理上所需要的例行巡檢作業之人力配置,提升員工在工作環境安全性,降低各個工作地點現場意外事件危險因素。在平台操作模式上,客戶可透過遠端操作降低人為監控操作風險,確保工作營運正常害生產運轉不停擺,更可以審視高風險作業情境並收集資料,協助作業流程的規劃與修正。此外,Vision AI為確保客戶遵守政府法規,透過平台的事件通知和管理檢測可幫助客戶能隨時掌控不同工作場域所需的設備及安全規範。 影像分析AI平台運用在跨領域的AI影像辨識技術 一般對於化工產業在工安巡檢方面,多數仰賴人員肉眼定期巡檢管線異常狀況,平均每次掃描一區域花上100分鐘,費時又費力,且管線位置難以目視觀測,恐造成員工在各樣工安環境意外風險。為降低化工產業在工安巡檢的痛點,鑫蘊林科協助國內知名化工業者,透過自動化影像分析AI平台,結合自定義虛擬電子圍籬,並運用廠區內相機配置AI管線洩漏模組,透過AI自動巡檢方式可高效降低異常檢測時間低於3秒。此外,佈署在廠內的相機可自動拍攝巡檢排程,達到全時段監控,讓客戶可即時發現且全面掌握管線,把危險降到最低。另外,自動化影像分析AI平台可協助客戶運用於廠區內火災警示,保守估計可提供投資報酬率小於9個月即可回本,平台使用越久,成本效益越高。 打造為Mobility as a Service在各領域的自動學習影像分析AI平台 謝源寶觀察指出,面對台灣整體在軟體公司的創業文化上最大挑戰,正是台灣年輕新創者或員工較不懂創業模式,缺乏視自已為公司擁有者一份子的認知,造成自己前途是模糊或抱持過水體驗的心態而讓自己無法堅持在一個新創企業長久勝任,是非常可惜的事。相信真正創業的精隨,是靠每位員工捲起袖子,埋頭苦幹,才能真正享受創業獲利的豐收果實,否則對於常換跑道的年輕創業者或員工而言,就如滾石不生苔,自己無法在創業路上落地深根,喪失扎實累積自己在經濟獨立能力。 鑫蘊林科在業務推展挑戰上,謝源寶感慨表示,由於台灣市場對AI軟體應用的認知不深,較多仰賴市面上open source的AI視覺分析或機器學習等資源,但實際上這些AI技術資源實可支持客戶AI模型需求的能量卻是有限,而造成AI視覺分析軟體品質在市場上良莠不齊的狀況發生。因此更間接波擊到鑫蘊林科能真正提供客戶專業且數據為中心Data-Centric的AI影像分析服務業者,更削減了公司在customer reference原本經營的價值。在技術研發挑戰上,視覺分析AI平台,不能僅仰賴AI模型專家,必須要集結各領域人才如雲端、機器學習、數據科學、前台後端等專業團隊組合才能讓平台成功運作。謝源寶表示,相信唯有透過視覺分析AI平台的自動學習、自動快速又準確的數據處理能力及提供客戶在雲端、雲端地端Hybrid到純地端完整的AI解決方案服務,才能真正說服客戶,從競爭洪流中脫隱而出。 展望未來,謝源寶期許鑫蘊林科能打造成為Mobility as a Service 在各領域如自駕車、智慧倉儲機器人、智慧城市的無人巴士自動學習的影像分析AI平台。同時,也感謝經濟部工業局支持下,鑫蘊林科能在台灣順利落地,並有機會招募各界人才共創打拼。短期布局,公司將積極與國內業者如鴻海、台積電在自駕車、智慧工安到智慧倉儲機器人等領域進行影像分析AI技術的落地合作。對中長期而言,鑫蘊林科將鎖定美國、歐洲、日本等國家為全球布局市場,並與國際大廠如微軟建立投資合作的夥伴關係,並複製成功經驗推廣至國際。 鑫蘊林科 官方網站nbsp 鑫蘊林科創辦人兼董事長謝源寶

這是一張圖片。 This is a picture.
AI智慧健康預防計畫

赫紀有限公司到「台灣兒童發展早期療育協會台東辦事處」舉辦一場AI故事繪本的互動教學,讓兒童、老師、家長一起進入沉浸式體驗教學。 AI生成兒童繪本教材 AI學習平台 nbsp 近年來台灣社會結構的改變,加上在醫院急診的經驗中,我們常常忽略了青少年所表現出的憂鬱症狀,導致孩子們出現自傷甚至是自殺的悲劇。孩子們憂鬱的產生往往很大部分都來自於學業上的表現,家長擔心孩子未來沒有競爭力,因此給予很多壓力在學業表現不佳的孩子身上。 nbspnbsp 一個家庭兩個孩子,有著相同的基因來源,提供相同的成長資源;我們發現第二個小孩通常在課業上的表現都不盡理想,成績不好,上課無法專心,就連看漫畫、打電玩也都無法有耐心與毅力完成,到底差異點在哪裡,我們一直在探索問題是如何發生helliphellip結果發現原因是幼兒時期對學習力出現障礙而沒有發覺。因後天環境因素導致學習力出現遲緩的孩子,八成以上的家長不會承認,也沒有意願帶孩子診療,主要擔心孩子會被貼上遲緩兒的標籤,因此孩子的學習力從幼兒時期就被迫遲遲了,進入國小國中後課業加重,落後幅度更大,家長生氣,孩子力不從心,家庭爭吵增加了,家長擔心孩子學業跟不上,便開始要求孩子要去補習,如果成效不好,花錢得不到好效果,則再次發生家庭革命,這些事件的不良循環都逐漸造成許多孩子在成長過程中累積了很多負面情緒進而影響健康的種種因子。 其實孩子考不好、學不會、不喜歡學習新事物,甚至產生影響健康的心理病症,背後很大的原因其實是幼兒時期學習遲緩累積造成的。六歲前是學習遲緩治療的黃金時期,若能在黃金時期可以發現與協助輔導,孩子們的學習能力將有機會可以被改善與得到10倍成效目前產業的痛點為以下 1缺乏學習力檢測方式市場缺乏樣本數據庫比對 2傳統家長思維迷思輕中度怕被貼標籤延誤治療 3缺乏治療教材教具治療行繪本和系列課程圈乏 本計畫將研發一個國家人才發展的生根輔助系統,利用 AI 技術發展出影響人一生健康的幼兒學習力檢測系統,陪家長共同守護孩子的「健康從學習力檢測」開始,早期發現、早期治療。在未來,台灣所有的孩子,不論出身,都能在幼兒時期將一生健康扎好根,長大後,孩子都能成為台灣國家發展的有用人才。 nbsp 2、nbsp 計畫內提出之AI應用技術與說明: 「兒童語言能力AI分析模型」。用以對「兒童表達一件事情」的「國語使用狀況」的「量化分析」。 情境:幼教師引導孩童敘述繪本內容。AI工具解析孩童描述繪本內容所使用的語句,並透過統計演算法量化分析孩童使用的語句。 分析指標:以「句型」及「語詞」為分析指標。分析內容包括:句型正確性、語詞多樣性、語詞使用數量、語詞使用正確性。 應用:單一孩童與同儕間語言能力分布的比較分析,可提供幼教師對不同孩子提供更細緻的語言能力教學。 使用技術:中文斷詞(中文分詞)技術、中文詞性標記技術、中文句法規則分析演算法、量化分析演算法。 使用工具:中文斷詞工具、中文詞性標記工具。 nbsp 3、nbsp 預期達成之產業價值: nbsp成立學習力檢測與輔助系統,透過治療型繪本與課程與幼兒園合辦學習力養成基地,讓孩子別停留在起跑點,陪家長守護孩子健康,從檢測學習力開始為目標,以強大樣本數據庫為後盾,提供家長早期發現孩子在學習上的延緩,協助孩子找回學習力。 nbsp 4、nbsp 預期達成之產業效益(經濟效益及未來擴散性、帶動性): 透過本計畫,只要協助遲緩孩子學習力能大幅提升,孩子是國家的主人翁,自然可以幫助國家在人才發展上得到看不到但非常實際的潛在影響力。同時,學習力養成基地的目的,就是要幫孩子找回家長,以增加孩子與家長互動的時間,讓孩子可以拋去單純 3C 的單面向互動變成與家長雙面向互動。這將潛在影響被環境耽誤有潛在能力的孩子再次得到機會發揮。

【解決方案】輔人科技透過智慧感知床墊 心領神會 讓照護長輩變得有溫度
輔人科技透過智慧感知床墊 心領神會 讓照護長輩變得有溫度

台灣邁向高齡化社會,銀髮長照需求大增。而長照的隱形殺手-長輩跌倒更是居家照護者和照護機構難以言喻的痛。如何讓每一次意外危機轉化為最即時溫暖的關心,正真實考驗著智慧照護的應變力和創新力。為了讓盡孝變得更簡單,輔人科技推出智慧感知床墊Foreaider-Z貼心輔助設備,可優先掌握長輩的生理資訊,讓長輩生活獲得尊嚴,彌補照護人力不足,提升照護品質,降低跌倒率達25以上,有效省去每人每年20萬以上的照護成本。 「為了照顧我的母親」是輔人科技2018年成立時起心動念的創業初衷,輔人科技創辦人暨總經理羅奕麟表示,本身是超過10年的照護者,回憶起母親曾為重度思覺失調患者,長達20-30年在療養院渡過,因不捨年邁的母親,羅奕麟決定一肩扛起照顧母親的重責大任。過去母親長期待在療養院,造成不願意與陌生人接觸,對環境空間變動感到沒安全感,這正是為什麼輔人科技以「在不改變長者的生活環境下,讓盡孝變的更簡單,讓長者生活有尊嚴」為產品終極目標,決定利用先進感測技術與AI分析為照護者傳遞適當的照護資訊, 免除照護者在照顧長者時經歷的身心折磨,期待透過智慧照護AI技術讓與長者互動可以更簡單。 長輩跌倒是居家照顧長者最常發生的意外事件,離床警示技術成為目前照護長者重要需求指標之一,羅奕麟表示。夜間人力不足常為照護機構經營的頭疼問題,僅能處理日常規律的照護事務,無法妥善進行例如像床邊跌倒、臨時身體不適例如吸入性肺炎等長者突發狀況管理或者細微病徵的判定,更是現行巡房及交接班機制無法妥善處理的問題。對於照護機構而言,以床邊跌倒為例,跌倒後將可能額外增加平均每人每年20萬以上的照護成本。 為打造照顧者和被照護者之間非語言的溝通橋樑,幫助照護機構快速應變長者的生理醫療資訊,提升醫護排程規劃,羅奕麟與核心團隊,集結照護者、醫師、資深工程師等專業人士,共同自主開發「智慧感知床墊」Foreaider-Z以提供居家和照護機構更貼心優質的硬軟體AI智慧照護解決方案。輔人無苟,扶人無咎,是輔人科技的成立宗旨,主要傳遞兩個層面。首先是以人為本,讓照顧長者成為有溫度的互動。此外,照護者應抱著無私奉獻的心態,經觀察,被照顧者基於不同理由,不見得有意願表達自身需求,若透過智慧照護技術能掌握到長輩需求,不僅帶給長輩更多尊嚴與空間,降低不必要溝通誤會,讓照護過程更順暢,又可降低照護成本。 智慧感知床墊 長輩的貼心守護者 降低跌倒率達25以上 在智慧感知床墊的技術突破上,結合輔人科技核心研發的生理微動感知技術,利用氣壓變化進行生理感測及AI演算法,讓照護者不需要更換原有床墊,只要把厚度不到1公分的智慧感知床墊放置於長輩原本的床墊下,插電並連上網路,等候3分鐘就可自動完成環境參數匹配與設定,即可開始準確偵測床上的壓力變化,判讀長者的動作行為。 針對照護機構的重症與長照對象以及家中的老人和嬰幼兒,輔人科技推出的智慧感知床墊共有三種版本,包含智慧感知床墊「Lite版」、「標準版」和「Pro版」。Lite版入門款,結合氣壓變化感測技術,可提供居家照護者對長者在離床警示和作息查詢相關辨識功能,透手機下載OTTALK伊鍵通居家照護鈴APP,照護者可遠端設定離床警示的時間並關注長者的離床與否狀態並可透過手機查詢作息狀態。標準版部分,除了離床警式功能,透過類比訊號演算技術,可提供照護者對長者在睡眠時心律與呼吸的數據量測狀態。對於智慧感知床墊Pro版,特別加入臥床-坐起-離床三階段警示功能及睡眠狀態紀錄如臥床時間、臥床時數、淺睡時數、深睡時數、清醒時數、呼吸中止次數等資訊,期望為終端客戶提供更好更即時的服務。 在商業模式方面,輔人科技以整合智慧感知床墊軟體技術的買斷制提供給小規模照護單位。在與SI業者合作上,公司則提供硬體設備進行整合並藉由SI通路創造更多推廣商機。 對於臨床試驗的實證應用,目前輔人科技已與台北安安養護所合作,陸續把智慧感知床墊如Lite款、標準款、Pro款等不同功能產品分別導入照護環境,提供長者多元化智慧照護的貼心便利服務。合作過程,由於安安養護所為小型人力短缺的機構,智慧感知床墊的離床警示功能協助照護者遠端快速掌握長者離床與否或跌倒狀態,有效降低跌倒率達25以上。透過生理微動感知技術快速協助照護者紀錄長者前一晚睡眠狀態,為照護方與家屬間創造更便利的溝通模式與資訊交流機制。此外,透過智慧感知床墊的落地實證可幫助養護所在機構評鑑上取得更正面的評價。 輔人科技透過生理微動感知技術開發智慧感知床墊 智慧感知床墊聲音AI辨識 讓吸入性肺炎送醫人數低於整體個案人數5 聲音AI辨識建立機制的優化一直是輔人科技努力昇化的目標,羅奕麟表示,很感謝在工業局和資策會的輔導下,輔人科技有機會參與呼吸道疾患AI照護服務開發計畫,並於埔里基督教醫院進行場域臨床實證。透過此計畫,不僅讓智慧感知床墊運用AI聲音辨識和演算技術更加精進,更把AI訓練優化架構建立起來,讓埔里基督教醫院的照顧者對於長者在上呼吸道-咳嗽音和下呼吸道-心跳呼吸率變化的辨識和警示效能更加優化,並有效降低照護機構因吸入性肺炎送醫人數,達到不超過當月整體個案人數5。相信在智慧感知床墊和呼吸道疾患AI照護服務整合下,預計今年可服務擴散到5家國內醫療院所,羅奕麟興奮表示,不只如此,智慧感知床墊更獲得日本經銷商青睞並進行產品測試,下階段將展開日本的商務推廣。 智慧感知床墊輔助照護機構降低吸入性肺炎送醫人數 創造長照產業軟硬體與服務生態系整合 讓照護變簡單 輔人科技成立至今雖然只有4年,但在產品技術研發卻花了9年時間才完 成,羅奕麟有感而發表示,在人力與資源有限狀況下,感謝一路支持和認同 公司創業理念的貴人們以及經濟部工業局AI產業推動計畫和法人資策會的輔導與支援。對於輔人科技這樣小型新創,無論是在資金、技術問題、生產的料件取得或加工處處是挑戰也是學習。然而皇天不負苦心人,因著輔人科技努力堅持以「讓想盡孝心變得更簡單」為終極目標驅動下,智慧感知床墊目前已成為全台首創氣壓感測生理資訊的智慧照護產品。對於強調社會價值導向的創業初衷,如何讓智慧感知床墊同時兼顧社會價值,又不失商業利益的雙贏與平衡是目前羅奕麟在經營公司產品與商務拓展必須要慎重思考的策略議題。 面對商務佈局,輔人科技近期將努力穩固營運和行銷運作,以回饋長期支持公司的投資者與目標客戶。此外,輔人科技更積極布局日本、越南及波蘭的國際商務拓展與商品測試。對於中期規劃,羅奕麟認為長者在照護需求與服務並非單一業者能獨立完成,輔人科技期待未來能與更多志同道合的智慧照護業者共創合作,透過集結各家業者的專業能量,建立完整多樣性的產品鏈機制,才能攜手搶攻國內外市場。為此,羅奕麟期許公司能創造長照產業軟硬體與服務生態系的整合,實現讓照護變簡單的心願。 展望未來,輔人科技將期許從長照走向預防醫學,相信若預防醫學經營有術,肯定對節省長照成本會是一大貢獻,羅奕麟表示,更重要是幫助長者在人生後半場享有更心領神會的照護品質且生命光明有盼望。 輔人科技執行長羅奕麟