精選案例

27
2021.9
【110年 應用案例】 無人智慧販賣機 黑沃咖啡一分鐘打造精品咖啡

科技也能飄著咖啡香 位於台中市南區高工路上的「黑沃咖啡」創始店,28坪的空間,飄散著文創與科技交融的咖啡香。2016年10月成立的黑沃咖啡,迄今在全台擁有7家直營店及28家加盟店,在全台已有15萬家店在賣咖啡的情況下,黑沃咖啡異軍突起的秘訣在於:運用AI科技,打造無人智慧販賣機,1分鐘煮出精美香醇的迷人咖啡。 黑沃咖啡實體店營造文創時尚氛圍圖:黑沃咖啡官網 根據國際咖啡組織(ICO)調查,台灣人一年喝掉285億杯咖啡,市場規模超過700億元;而業者星巴克調查,2018年台灣咖啡整體市場達720億元,2020年已上看900億元。近5年,台灣咖啡市場以每年約20的成長率擴展,成長潛力驚人。 咖啡需求商機驚人 每年以20速度成長 在咖啡已成為台灣人時尚消費象徵的現在,除了星巴克、路易莎等一級品牌咖啡店外,還有7-11、全家便利商店,及在街頭巷弄一家家的精品咖啡館。如何吸引消費者的目光,在淪為「紅海市場」的咖啡市場中異軍突起,就有賴彈性與創意,了解消費者的需求與口味,更是培養品牌忠誠度的不二法門。 除了實體店面外,黑沃咖啡也積極發展虛擬通路,其電商平台除了官網,還有 PChome、momo及團購主等通路, 通路多元,業績也穩定成長。 即便如此,黑沃咖啡創辦人林佩霓仍不斷求新求變,在成立前三年,由於與加盟門市的關係處理往往處於被動分散狀況,難以主動掌握市場動向,與消費者溝通的節奏及品牌跟進消費者的速度存在著一定的落差,較難以培養品牌的忠誠擁護者。 職人精品咖啡深受消費者喜愛。圖:黑沃咖啡官網 透過AI鷹眼系統爬蒐商情 市調成本大幅下降 為解決無法快速掌握市場風向與市調成本高昂的兩大痛點,黑沃咖非在2020年導入AI鷹眼系統爬搜市場商情,透過在社群網站、新聞、論壇等社群媒體全方位爬蒐各式文章,自動貼標,合適篩選,從網站每篇以5個關鍵字計算,爬蒐4,858篇文章,相當於24,290個關鍵字,所花費的成本不多,可以精準掌握到消費者的口味與偏好。 同時,在新品推出之後,不僅可即時通知加盟店,更可以透過社群了解消費者的接受程度,作為是否大力推廣的參考依據。 透過數據的蒐集,及透過AI演算法的分析,選出消費者最喜歡的口味,可以降低新品推出的風險,提升新品成功率,因此,黑沃咖非在2021年大膽開拓新市場,推出全球首創AIoT智慧咖啡創新概念,與全聯合作首間「智慧超市」合作,結合黑沃咖啡打造無人智能手沖咖啡機,讓消費者也能享受獨一無二的好風味。 洞悉消費者口味 打造AIoT無人智慧販賣機 台灣第一家全聯內湖瑞光「智慧超市」就位於台北軟體重鎮內湖區內,推出全球首創AIoT智慧咖啡概念店,可以透過手機App連動AI智慧咖啡販賣機、AI手沖咖啡機、AI真空冷萃機,一次滿足三種咖啡科技體驗,自助區部分設有黑沃咖啡AI智慧咖啡販賣機,不僅支援多種無現金支付方式,還是全台唯一以冷藏牛乳製成奶泡的無人智慧咖啡販賣機,嚴選黑沃5A級牛乳,從付款、研磨現煮、到出杯,只需1分鐘時間。 台灣第一家全聯「智慧超市」於台北市內湖區瑞光路成立。圖:全聯FB粉絲頁 全聯智慧超市設置AI智慧咖啡販賣機,使用APP操作就能享用香醇咖啡。圖:全聯FB粉絲頁 現在,加上AI科技元素之後,喝咖啡不只是純喝咖啡,也為消費者帶來更多全新的科技體驗與便利。

2021-09-27
【111年 應用案例】 連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝

2022-03-14
【109年 應用案例】 紡織業挑戰快時尚,AI庫存預測降低三成五誤差率

服飾快時尚、少量多樣、短交期 紡織產業面臨服飾品牌快時尚趨勢衝擊整體紡織供應鏈,全球品牌通路都推動零庫存、短交期與少量客製化,生產時間、品質、成本難以平衡,面對品牌商對ODM的預測與實際需求常有落差,造成物料管理與大量庫存成本積壓的問題。 由於客戶預測需求不準確,常導致備料困難,備料太多會增加積存量、備料太少可能延誤交期。本計畫規劃以國內一級供應製造商為對象,建立各客戶專屬的物料需求AI預測模型 AI計算銷售趨勢,進而預測需求 輔導團隊與神通資訊科技合作,計畫主要透過LSTM演算法來做為AI的基礎,主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計上使用簡單迴歸,乃至複雜的『時間序列分析』Time Series Analysis來預測銷售趨勢,因為,當期的銷售量通常會與前期的銷售量有緊密的關係,除非公司發生重大事件,否則,應該會循著規律變化。 銷售量預測的樣態很多種,包括營收、利潤、來客數、遊園人數、銷售產品數金額、等等,都屬於同一範疇,以下會以工廠的每月出貨批數為例,使用 LSTM 模型預測下個月的出貨批數。 物料需求分析方案執行架構 本計畫規劃以客戶為對象,建立各客戶專屬的物料需求AI預測模型,規劃階段使用三種機器學習演算法試作物料需求AI預測模型: Logistic Regression Algorithm 羅吉斯迴歸 Gradient Boosting Algorithm 梯度提升法 Deep Learning Algorithm 深度學習法 物料需求AI預測模型規劃 需求預測誤差自最高70降至35,降低備料庫存量 本計畫將客戶預估需求、所需物料類別、供應來源、客戶交期等資訊,以機器學習的方式,建立主要原物料的採購預估系統,將該客戶前五大國際客戶需求量預測誤差自最高70降至35,大幅減輕庫存之備料量。

2020-03-30
【110年 應用案例】 光學產業AOI導入AI大躍進 徹底解決鏡片瑕疵檢測痛點

智慧型手機、遠距工作等宅經濟發威,資通訊產業暢旺,帶動光學產業蓬勃發展。然光學鏡片的瑕疵檢測多以人眼檢測進行,不僅耗時費力,受限於人眼容易疲勞,誤判率也是光學業者揮之不去的痛點。受惠於AI技術的演進,上暘光學導入繞射光學技術拍攝,以系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,大大提升瑕疵辨識率高達90以上。 台灣光學產值佔全球10 精密光學應用範圍日廣 光學產業為消費性電子之主流產品,於2019年即使台灣受中美貿易爭端之影響,光電產值仍達463億美元,佔全球10。其中,在「精密光學」部分,即佔新台幣870億元(約29億美元)產值。有鑑於智慧型手機鏡頭數目的增加,相較其他領域之衰退狀況,精密光學仍保有4的持續成長。 自2000年夏普推出全球首款搭載後置11萬像素鏡頭的拍照手機開始,終端消費者即對智慧型手機攝像性能的要求不斷提高,且隨著網際網路5G高速網路的浪潮來襲,帶動擴增實境AR或虛擬實境VR等應用市場的活絡,其技術的創新與應用更為光學產業增添許多動能,而應用的領域更已從智慧型手機延伸普及至汽車、家庭娛樂等大眾民生市場。 光學鏡頭對於「精密光學」經濟發展密不可分,隨著半導體技術的不斷成熟、網路速度的不斷提高,光學鏡頭的運用不僅僅在智慧型手機、平板電腦、傳統相機、播映投影、民生車載領域,其在高精密製程之工程視覺檢測、安防應用的需求更是不斷高速成長。 光學鏡頭瑕疵檢測多以人工進行。 「光學鏡片」為整體光機系統之必要零組件,其進料後與出貨前的鏡片光潔檢測不僅左右整體產線效能發展,對終端客戶的品質承諾影響更是不容小覷。 長期以來,光學產業多以人眼檢測進行瑕疵檢查,隨著生產量的持續提升,不僅人力成本持續上漲。隨著檢驗人員的年齡增長,視力逐漸衰退,誤判率更是年年增高。且近年人力招募困難,即使有幸招募,該檢驗技術養成不易,且訓練時間冗長,無法及時因應產線人力需求。 導入繞射光學技術及AI訓練模型 提升瑕疵辨識率達90以上 現行市面充斥著大量自動化光學檢測系統,並具有多項針對鏡片瑕疵的實質案例。但經由上暘光學多年來的市場探勘與評估,該系統仍無法解決現行人工檢測之問題,其主要在於光學鏡片外型為曲面且透明,並不容易拍攝到各種瑕疵狀況,且一旦瑕疵周圍有其他雜光之干擾,判斷難度更高。且不同型號的鏡片都需依瑕疵狀況個別透過旋動打光、拍攝手法的調校方可進入到判別階段,人力耗費比例仍高居不下,並不符合效益成本。 藉此,經過經濟部工業局AI計畫執行團隊的媒合,小馬光學協助上暘光電建立有效瑕疵拍攝系統。由小馬光學提供精密繞射光學的指導,基於「光」波動的特性即可以統一鏡頭拍攝方式獲取鏡片瑕疵狀況。 現行市場拍攝系統多採幾何光學方式,幾何光學以直線光行進,對於鍍膜缺失、細微刮痕、液態髒污等瑕疵並不易拍攝。合作方案導入繞射光學技術拍攝,經過全角度的精密成像可達到比一般幾何光學元件更高的對比、更卓越的降噪程度,以獲取必要之瑕疵影像。 光學鏡頭刮傷瑕疵示意圖。 為提升本案更細緻的瑕疵檢測辨識率,上暘光學基於系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,不僅提升瑕疵辨識率達90以上,更有助於後續自動化產線發展。 此合作案的AI模型訓練由奕瑞科技提供,目前大部分廠商導入產線瑕疵檢查AOI的系統,大多採用OCR光學字元辨識,是指對文字資料的圖像檔案進行分析辨識處理,取得文字及版面資訊的過程技術,需要達到百分之百的精確度,沒有任何容錯的空間,導致誤殺的情況時常發生。 加入AI訓練模型之後,光學鏡頭瑕疵辨識率大大提升。 AIAOI解決人力不足及誤判率過高兩大痛點 此次奕瑞科技與小馬光學合作,將奕瑞的AI系統搭載在小馬光學研發的光學檢測儀器,在光學檢測瑕疵上加入AI演算法,根據客戶提供的資料與需求,訓練AI模型辨識對於瑕疵的判定,可大幅提升判別的準確度,提生良率,並增加產線效率。透過上暘光學、小馬光學與奕瑞科技三方合作,將光學產業AOI導入AI,期望能徹底解決產業鏡片瑕疵檢測之痛點。 上暘光學自2019年設立生產線後,即希望導入智慧化生產模式。有鑑於公司營運持續成長,生產量持續提升,透過該成果的導入與拓展,將大幅減緩人力需求,更可因高準確判別率指標降低生產排程影響,進而提高生產效率。 上暘光學表示,由於開發成果落地,將可引領該技術推播至光學產業上下游業者,諸如上游光學鏡片原料供應商直至下游成品應用端,包含沉浸式遊戲設備、相關曲面玻璃產品、民生車載及安防攝像裝置等。

2021-09-23

應用案例總覽

【導入案例】AI建構最佳塗裝模型,降低電磁鋼片廢材檢驗成本,每年可省200萬
【109年 應用案例】 AI建構最佳塗裝模型,降低電磁鋼片廢材檢驗成本,每年可省200萬

表面處理應用面臨成本攀升與人才斷層問題 金屬表面處理的技術發展影響航太、汽車、機械、家電、通訊、扣件等內外銷產品品質。同時它對於國內「五加二」的智機、國防與循環經濟扮演舉足輕重的角色,依照2018年調查統計,金屬表面處理業產值達新台幣1,515億元,相較2017年成長36。 然而金屬表面處理係高勞力、高耗能、高污染的產業,長久受到專業技術人才斷層、環保法規不斷加嚴造成處理成本不斷攀升,致使產業面臨生存危機與國際高值供應鏈競爭危機。 人工品管面臨市場考驗,鍍膜製程找到新契機 國內某鋼板鍍膜廠目前國外市場佔營收7成,2016年往汽車用鋼材、多元供應鏈與多樣特殊鋼品市場發展,為搶進國際市場,表面處理透過創新科技提升品質勢在必行。 鋼板鍍膜連續製程中,鋼板完整成品與瑕疵品的兩者價差約10倍左右,現階段採取人工檢驗方式驗證,每卷鋼捲於生產過程中需裁切10米做為固定檢驗廢材,造成大量廢材成本產生,及生產時程的延宕,同時,人工檢驗的品質不穩定性,也讓生產品質無法恆定。 憑藉中山大學產發中心深耕南部十多年的輔導能量,針對該鋼板鍍膜廠之痛點,媒合AI光學量測技術服務商,降低鍍鋼檢測耗材成本,並減少人力檢測疲勞所造成之誤差。 以光學量測技術穩定鋼板塗裝品質 為掌握塗裝製程品質,需要運用影像辨識產品良率,而一般的量測技術需以接觸性偵測鍍膜厚度,故中山大學產發中心媒合AI光學量測技術服務商,協助開發非接觸光學量測儀,記錄塗裝數據後續比對出最佳製程數據。 3D非接觸量測儀測試展示圖 量測儀數據展示呈現圖 透過AOI光學檢測快速掃描,以非接觸方式量測,可在不直接碰觸產品或破壞鋼板表面情形下,迅速掃描出待測物的剖面及輪廓尺寸數據,不須增加成本負擔,可即時控制鋼板膜厚品質狀態後續也希望可以針對製程環境之數據做計算,設計產品異常示警範圍,以利後續製程更智慧化之使用。 未來,此解決方案將進一步檢測表面瑕疵及鋼板成品色差,以降低廢品產生之比例,解決專業技術人才斷層問題,並提升產品良率。 非接觸量測儀操作示意圖 建立AI塗裝模型,打造世界級的鋼板供應水準 透過中山大學產發中心於2020年輔導,該鋼板鍍膜廠加速先進製程技術應用,建立表面處理製程品質標準量化指標,有助於國內表面處理生產高品質電磁鋼片,估計可提高2的產品價格。 此外,未來還能協助業者通過高價值航太、電動車、扣件與航太熱處理認證,以創新的思維提升產業附加價值,繼續帶領金屬產業向前邁進。

【導入案例】LEO國眾電腦AI行動視力智慧箱 定點視力檢測關懷行動不便長者
【109年 應用案例】 LEO國眾電腦AI行動視力智慧箱 定點視力檢測關懷行動不便長者

若提到檢查視力,大家直覺會想到跑一趟眼科,不過這對於住在偏鄉、或年紀大的長者來說很不方便,如果視力檢查也能行動化,那就能輕鬆解決這個問題。 LEO國眾電腦推出「AI行動視力智慧箱」,希望能深入偏鄉與社區提供視力檢查,解決城鄉醫療差距的問題。nbsp 「AI行動視力智慧箱」解決城鄉醫療差距 台灣正式邁入高齡社會,根據健保統計資料顯示,國內70歲以上長者白內障病變比例高達九成,甚至在新北市29個行政區中,有高達13區沒有眼科診所,甚至有些地區因為偏遠與人口稀少,沒有醫生願意看診,可見城鄉醫療資源差距之大。由簡明仁博士在1985年創立的LEO國眾電腦希望在醫師人力不足的問題下,運用AI技術來解決問題,於是找上工業技術研究院服務系統科技中心工研院服科中心的團隊協助。 工研院自 2014 年開始投入眼底鏡整合平台,研發團隊向教學醫院、診所等醫療機構收集上百萬張眼底攝影照片,從中篩選出適合的 10 幾萬筆資料,再交由專業眼科醫師審圖、註記、判斷,將每張眼底攝影照片標示為 4 個不同的病況等級,再餵給人工智慧進行學習。其後,逐步因應醫療現場需求開發新功能,提供全程自動化的自助式眼底攝影服務。 本案例透過工研院輔導技轉,由國眾電腦提供服務整合營運客服,工研院則負責系統整合、平台維運,此外,場域端則由大學光學眼科提供檢測場所以及檢測服務,推廣至糖尿病共同照護網、視光中心、驗光所、眼科診所、社區服務據點提供眼底鏡檢測服務。這套「AI行動視力智慧箱」亦在AI HUB大會上正式展示,希望能強化未來深入偏鄉與社區提供視力檢查,解決偏鄉醫療資源不足的問題。 「AI行動視力智慧箱」將細隙燈、眼壓計、眼底攝影hellip等眼科手持式儀器與行動視力檢查系統整合成一卡皮箱,可提供25項視力檢測。 「AI行動視力智慧箱」即時上傳數據 「AI行動視力智慧箱」使用方式相當簡單,內建區域無線網路,能將掃瞄的影像與數據即時上傳。nbsp 「AI行動視力智慧箱」將細隙燈、眼壓計、眼底攝影hellip等眼科手持式儀器與行動視力檢查系統整合成一卡皮箱,可提供25項視力檢測功能,在設計上更以病人為中心,提供身份識別、檢測數據讀取、眼底自動比對系統、病歷資料歸檔管理hellip等功能,特別是能進行病人個別檔案管理,加上內建區域無線網路與智能閘道器,方便把包括影像、數據hellip等所有檢測資料即時上傳。 目前「AI行動視力智慧箱」已與台北各大醫院與新北市家醫診所合作,未來也計畫陸續深入各偏鄉地區。nbsp 「AI行動視力智慧箱」除了可應用在醫療院所、健檢中心hellip等固定場所,可攜性這個最大優勢,讓視光師或護理師可帶著前往一般家庭、或偏鄉幫民眾做眼睛檢測,提升醫事人員執行任務便利性與機動性,讓視力檢測走出醫院、走入社區。目前「AI行動視力智慧箱」已與台北各大醫院、新北市家醫診所合作,希望透過直接深入偏鄉與社區,讓行動不便長者可就近接受眼睛檢查,以達到及早發現盡早治療的最大目標。

【導入案例】公廁如何靠IoT及雲端科技變乾淨、解決7成客訴,並且提昇120倍效率
【108年 應用案例】 公廁如何靠IoT及雲端科技變乾淨、解決7成客訴,並且提昇120倍效率?

IOT智慧廁間:一個乾淨、省電、便利的新智慧廁所革命 使用六種感知器偵測衛生紙、洗手乳存量、漏水、臭味發生以及人流和廁間使用狀況偵測,搭配上NBIoT傳輸、雲端系統以及 LINE 機器人。可以大幅改善客訴、提高廁所消耗品的補給效率,加上即時的狀況通知,可以禁絕違法廁間抽煙以及提昇安全性。使用者再也不會遇到廁所濕、髒、臭,以及沒有衛生紙的窘境,體驗大升級。 走進熱門觀光區的公廁,給您什麼樣的印象沒有洗手乳沒有衛生紙甚至是又髒又臭還漏水資策會的 IoT 大數據智慧廁間解決方案,一次解決廁所不方便的問題。 根據行政院環保署的統計,截至2019年9月底為止,全台灣目前已經建檔管理的公廁數量達 4 萬 3 千餘座,而整個環保署卻只有 3 萬 4 千餘人。這麼龐大場域數量的清潔管理,顯然不是一件容易的工作;再加上高齡化社會來臨的必然,從事第一線廁間清潔服務的人員數量和品質勢必遇見前所未有的瓶頸。引入有效的服務流程以及科技的輔助,成為一個遲早要面臨的重大課題。 資策會在全台 20餘間 IoT 智慧廁間服務解決方案的實證案例,或許為我們解決這道難題帶來一個不錯的方向。 應接不暇的客訴、四大問題、以及資策會的三套解方 2016年,當與火車站共構的捷運松山站正式啟用後,原本使用量已經幾乎爆滿的公共廁所,面臨到爆量使用所造成的嚴重客訴。原本平均每日旅客量只有四萬人次的臺鐵松山站,就已經瀕臨服務產能的瓶頸;在連接的捷運松山站開通之後,旅客爆增為七萬人次,讓原本就已經接近極限的服務能量,完全無法應付捷運開通後新增的旅客量。 曹雪芹在小說巨著「紅樓夢」當中曾出過一個刻劃人心的經典台詞:「牆倒眾人推」,或許可以形容這個現象:各個獨立廁間的衛生紙、洗手乳總是來不及補充、洗手台骯髒以及廁間排泄物的污染來不及清理,使得廁間的客訴連連,應接不暇。再加上臺鐵松山站的公廁比捷運松山站的公廁更為靠近旅客必經要道。臺鐵松山站至此,必須站出來、面對並解決這個難題。 由於臺鐵松山站與資策會有著長期的合作關係,就委託資策會協助解決這個頭痛難解的問題。 愛迪生有句名言:「只有在我知道一切做不好的方法以後,才知道做好一件工作的方法是什麼。」而資策會第一個要做的就是痛點分析(Pain Point Analysis),從根本面來思考問題。經過盤點客訴以及與第一線的清潔服務公司探討分析之後,發現四個問題、和三個解方: 四個問題分別是:衛生紙以及洗手乳補充不即時,洗手台潮濕以及空間內的惡臭。 而三個解方分別來對應這四個問題,分別是:1 消耗品如衛生紙、洗手乳的精細管理。2 服務流程中的關鍵績效指標 ( KPI )數位化,如洗手台的潮濕程度,或是空間中的臭味濃度。3 利用物聯網( IoT )的新科技達成前面兩個解方的實作,輔佐大數據和雲端科技來達成高效益的場域清潔管理。 「技術特點以及研發過程」 六個關鍵感知器,以及 IoT 雲端主板與大數據的結合,徹底解決七成的客訴,效率也提昇了120倍 一、消耗品的精細管理 為了達成衛生紙和洗手乳的精細管理,第一步就是針對這兩個耗材研發感知器來偵測。 從 2017 年開始,資策會開始設計首款的紅外線廁紙偵測模組。該模組主要運用衛生紙使用習慣的物理特性來偵測:一般正常使用下,廁紙放在鐵桶型的支架上,它的厚度會隨著消耗而慢慢的變薄。 這個模組需要利用 PSD 位置感應探測器 position sensitive detector 、 IRED 紅外線發光二極體 infrared emitting diode 以及 SPC 信號處理電路 Signal processing circuit 三者的搭配,來達成有效的廁紙長度判斷,其精確度甚至達到小數點後一位。 第一次開發這個偵測模組的時候,由於沒有可以參考的設計,只好從感知器的選擇、電路板的設計規劃、感知器程式的撰寫,甚至光固化 3D 列印的外殼設計完全不假他手,全部都在資策會內完成。 智慧廁間服務實境 不過,雖然設計生產廁紙感知器的種種困難都克服了,但是萬萬沒有想到,如何固定反而是讓人吃盡苦頭的一道難題。 智慧廁間廁紙偵測模組 資策會團隊與我們分享:「一開始的時候,我們用熱溶膠固定,可是清潔人員每次補充廁紙的時候都需要開開關關。震動一多,沒有很牢固的固定住,結果就是掉下來。 最糟糕的狀況是在女廁:有一次有女性旅客如廁的時候,這個感知器沒固定好就掉下來了。你會不會覺得這個感知器看起來很像針孔攝影機這東西突然在女廁掉下來,有沒有很糟糕(笑) 還好長官支持,我們也持續研發如何固定的技術,直到最後可以成功的牢牢固定,不然這個專案早就胎死腹中了。」 智慧廁間服務手機畫面展示 後來,廁紙偵測模組上線之後,原本清潔人員巡察一次廁紙使用量就要花掉 15- 20 分鐘,後來只需打開 APP,10秒就能查完廁紙使用量。大幅提高了效率至原本的 120 倍。 既然衛生紙的消耗量解決了,下一個難題就是洗手乳的低存量偵測了。 跟衛生紙不同,洗手乳每一次補充的量不見得完全相同。由於設計的理念是希望能夠用最低價、最穩定的元件來完成這個功能,以便於未來的推廣。最後選擇了常見的霍爾感應器,將其貼在洗手乳給皂器的外殼上,來達成偵測洗手乳即將見底的功能。 原理其實很單純,只要液面低於某個百分比,霍爾感應器就可以對液面進行電磁感應而產生電壓的變化,感知器送訊號至後端的雲端伺服器,然後跟廁紙感知器一樣,由伺服器再發送訊息給清潔人員。 二、服務流程中的關鍵績效指標 ( KPI )數位化 洗手台潮濕往往就會滲水到地板上,再加上來往旅客腳上難免帶有灰塵,一旦踩過潮濕的地板,就會使得地板髒污。視覺上就會給人「這廁所很髒」的感受。然而,廁所不可能隨時都有清潔人員值守,這時就需要有專門的感知器來偵測這樣的情況。 資策會利用薄膜導電電阻的特性,當薄膜電阻表面具有液體時就會降低整體電阻值,進而改變類比訊號輸出的相關數值。如此一來,只要在容易潮濕的表面鋪設薄膜電阻即可偵測潮濕的情況。例如窗台旁邊,或是洗手台面。 不過,由於感知器較為昂貴,而且刮傷就會破壞感知器的效能,所以後來只有特定的公廁才有導入這個潮濕偵測的感知器。 另外,除了視覺上的髒污,若是公廁傳出陣陣惡臭,即便這個廁所看來明亮乾淨,仍然會被認為是髒污的廁所。 然而,臭味的偵測可沒有那麼容易解決。 一開始,為了找到這個「電子鼻」,找遍了國內外的各種感知器,結果才從日本某個專門生產各種氣體感知器的大廠產品線中找到合適的 MEMS 微機電感應晶片。 所內接著也是從這個晶片的麵包板測試、電路設計圖、以及發包出去生產,共花了近半年才完成這個感知器的設計。 除此之外,在研發智慧廁間的過程當中,陸續也接到其他的需求,如人流偵測以及使用偵測等模組的研發委託。 智慧廁間感測器呈現 在開發過程當中發現,部份的無障礙廁間可能在使用過後,使用者有可能不小心把門關上,燈也忘記關,所以看起來這間廁所一整天都有人佔用。然而,真正需要使用的人反而被空蕩蕩的無障礙廁所擋在門外。這個問題相對簡單,工程師找到現成的人流感應模組,將其安裝在洗手台之下,這個問題也就迎刃而解。 另外,部份偏遠的公廁如梨山國家公園這一類公廁,對於環保減碳的要求上實在難以執行。由於地處偏遠,負責人員每天上班要去開燈,下班再去關燈。有些時候一整天卻沒有幾個遊客使用公廁,但所有的燈光以及設備都還是整天開啟,實在非常浪費電。 而一般市售的感應器非常呆板,只要30秒到10分鐘設定的時間一到,就關掉電源。或許在家中只有一個人使用廁所的情況,這樣的感知器已經堪用,但是動輒60坪的廁所,需要好幾個偵測器一起工作才能確保是否還有使用者在廁間當中,又是一個市面無售的解決方案。資策會只好整合多個感知器,另外在 MCU 上開發演算法,才解決這個需求。 三、IoT、雲端、大數據、以及 5G NBIoT 新科技的引入 創新的路上,總是有總總的困難等著工程人員來克服。而見招拆招的過程當中,也一步步的精鍊了解決方案,使它更便宜、更可靠、更便利。 在前述的各種感知器建置完成之後,這套系統也陸陸續續產生新的問題留給資策會來解決。例如使用者習慣的障礙、耗電問題、成本問題等等。 由 APP 改為更為貼近使用者習慣的 LINE 群組機器人 智慧廁間服務架構呈現 2017年首次完成松山車站約 60 坪的公廁佈建之時,是採用 MCU 搭配 WIFI 的通訊方式全天候監測並傳輸資料到伺服器上,在系統判斷異常之後,利用資策會寫的手機 App 通知清潔人員。 這個設計乍看之下似乎牢不可破,然而,由於現場清潔人員平均年齡 50 歲以上,安裝一個專門的 APP 反而沒人使用,第一線人員經常用沒幾天就把程式刪除。空有整套感知器在監控,卻沒有清潔人員真的使用。使用者習慣,往往是新科技導入面臨的最大障礙。 後來,做了一些使用者訪談後發現,每個公廁的清潔人員,都有一個 LINE 群組。 智慧廁間服務 Line 群組展示 資策會團隊提到:「既然知道他們(清潔人員)有 LINE 群組,那就好辦了 我們一開始小心翼翼的詢問清潔人員,是不是可以邀請一個機器人rdquo新同事rdquo來幫忙巡察衛生紙以及判斷廁所的異常。 一開始的時候,清潔阿姨們還有點疑慮。後來發現這個機器人rdquo新同事rdquo很好用之後,反而很愛它。」 因為成本、環保、以及便利性問題,由 WIFI 升級成 NBIoT 通訊協定 WIFI的速度快,頻寬大。但是一個公廁裡有男廁和女廁,就要分開兩個系統來分別監控,而且每個系統都需要獨立的 4G 網路連上雲端系統。所以建置以及通訊成本較為高昂,而且耗電也比較大。 說到這裡,或許讀者會有疑問:公廁都是設置在公共空間當中,難道沒有公共 WIFI 網路可用 資策會團隊給了我們很有深度的答案:「其實,確實幾乎每個公共空間都有 WIFI 網路可以使用,但是,與其他人共用 WIFI 容易受到干擾,而且 IoT 設備簡單,缺乏安全性控管的機制,若使用公開 WIFI ,有一定的安全風險。 因此,我們的解決方案中,還是設計封閉的WIFI通訊系統來解決通訊問題。 另外,由於一個 WIFI 基地台能夠支援的節點數量只有 20-30 個,一個有 18 個廁間的女廁就需要一組系統了。再加上隔了一個水泥牆,訊號會非常衰弱,甚至影響到訊號的穩定性。所以一個公廁設置兩套系統主要是穩定性考量而不是成本考量。」 人口密集的使用場域當中透過 WIFI 來傳輸資料到伺服器並不會太麻煩,然而,當智慧廁間系統開始被應用到更遙遠的廁間如梨山、谷關、獅頭山等國家公園遊客中心公廁,時時都要確保網路通暢,確實成為一道難題。 還好,5G 的新一代行動通訊網路當中有一個專門為了 IoT 物聯網設計的 NBIoT 窄頻物聯網通訊方式 Narrow Band Internet of Things。資策會領先全台,採用國內晶片大廠的 NBIoT 晶片組開發出台灣首套針對智慧廁間設計的 NBIoT MCU 控制系統 。 這套系統除了成本大幅下降、而且十分省電,只需要原本 WIFI 系統 的電量。最重要的是,比起傳統 WIFI 需要相對穩定的 4G 訊號橋接,這套系統的覆蓋範圍更廣,深山野嶺也都可以通訊。使得未來智慧廁間的覆蓋率,可以不受網路訊號的限制而更加廣泛。 四、「效應分析以及未來展望」 IoT 智慧廁間:一個乾淨、省電、便利的新智慧廁所革命 隨著整套的各式感知器、雲端系統、NBIoT 以及 LINE 機器人陸續上線,帶來的好處十分顯著。 以松山車站公廁為例,從本來的應接不暇到後來大砍 70 客訴量,巡察消耗品廁紙所需要的時間從原本的 15-20 分鐘縮短到只需要 10 秒。一旦有異常狀況發生,也從原本的不知不覺,到現今的立即通知。 有趣的是,意料之外的,這整套系統也順便也帶來了安全、以及徹底執行菸害防治法的附加好處。由於廁間只要有人佔用超過 40 分鐘,就會發出警告給清潔人員的群組。所以,一旦有使用者佔用太久,就會有清潔人員來敲門。安全性大幅提昇。 另外,臭味偵測器對於煙味也非常的敏感。由於國家公園全面禁煙,部份偏遠公廁常有旅客存著僥倖心態,溜進公廁偷抽煙。在國家公園的公廁中,臭味偵測器一旦偵測到煙味,就會播放一段菸害防治法的語音,讓旅客清楚知道公廁內抽煙可是要開罰新台幣二千至一萬元的。自從臭味偵測器安裝了之後,公廁使用者偷抽煙的情況很明顯的大幅減少。 後來,松山車站的「智慧公廁」因為克服了種種難題,而得到了交通部頒發的「金路獎」,因此而聲名大噪。從原本的客訴連連,變為各個公部門爭相參訪的模範公廁,讓承辦人多了許多帶團參訪的工作,也可以說是很奢侈的煩惱吧。 未來展望 這套系統因為 3 年的研發和場域實驗過程當中已經實證其穩定性和成本效應,目前已經成功技轉給國內的系統整合廠商。目前服創所也期待未來這套方案能夠擴展、甚至是技轉到歐美地區。 除此之外,在穩定可靠的數據流和通訊連線基礎之上,引入大數據來分析,或許可以讓人力的調配更加的精細,工作分配不均的問題可望得到根本的修正。 面對高齡化社會的來臨, NBIoT 通訊系統,搭配上各種 IoT 感知器,或許可以為我們帶來更健康、安全的生活環境。一些傳統上高度仰賴人力的重複性工作,也可以利用科技大幅提昇效率。

【導入案例】智慧農漁業數位分身:一個高效率、永續經營的農漁業升級解決方案。養殖漁業如何靠著稱為「數位分身」的AI 技術達成三倍產量
【108年 應用案例】 智慧農漁業數位分身:一個高效率、永續經營的農漁業升級解決方案。養殖漁業如何靠著稱為「數位分身」的AI 技術達成三倍產量?

靠著九種感知器偵測水質、以及監控養殖物生長狀況和漁民行為決策,「智慧農漁業數位分身」人工智慧解決方案,可以大幅增加產量至 300。「開心農場」式的高科技整合的解決方案,可以讓新手也快速上手,農漁業可以大幅降低對於經驗的倚賴,增加年輕人回鄉加入農漁業的誘因。 曾經有一段時間,FB遊戲剛剛開始流行的時候,因為「開心農場」這個熱門遊戲,可以說是人人皆農夫。上班族中午休息時間一一拿出手機,開始了手機上的快樂農夫生活。有些人還調皮,上班時間偷偷連上 FB ,偷了同事的菜。由於這個遊戲實在太療癒,有些人還真的就踏入真正的農田,當個小小的假日農夫。如果說,「開心農場」真實存在,你相信嗎由資策會服創所領頭開發的「數位分身」-「智慧溫室」以及「智慧養殖場」解決方案,就是貨真價實存在的「開心農場」、「開心水族箱」。 在這裡,基於 IoT 的 9 大感知器,會持續監測水質等作物 養殖物生長環境的「設施因子」,並且透過控制盒上傳雲端。而雲端中的 AI 機器人會在系統內持續模擬出一個數位的分身,在收到外部的水溫、溶氧量等等「設施因子」、以及持續蒐集作物 養殖物生長狀況的「生長因子」,雲端系統裡面創造出一個模擬的養殖漁民的「數位分身」,AI 機器人也會按照過往漁民的成功策略來運算出合適的「行為決策」。 在含氧量低、水溫超標等等情況下, AI 會建議你開水車、開增氧機,或是用藥等等行為決策,漁民則可以考慮自己的經驗或是知識,再判斷是否要採用。事後,系統也會比較判斷結果,漁民也可以就結果來判斷,究竟是真人的決策比較厲害,還是「數位分身」的行為決策比較厲害。 除此之外,智慧農業的數位分身AI ,在背景也是 24 小時運作不打烊,它默默的紀錄並且分析養殖漁民在智慧養殖場中針對各種「設施因子」以及「生長因子」的對應「行為決策」,由此慢慢的建立起養殖策略的最佳解模型。慢慢的, AI 像是個小學徒,在漁民身邊默默的學習這些「隱性知識」,使得這些知識不會因為漁民退休而失傳。 不僅如此,除了「種魚」還可以利用同樣的技術方案去「種菜」,這些最佳化養殖 種植模型可以成為珍貴的資料庫,即使是剛入行的新手,也可以跳過摸索的過程,直接成為大師。 三難一貴,是目前最大的挑戰:人力不足、老年化、經驗失傳三大難,新科技導入貴 台灣農業技術、養殖技術都聞名全球,然而小農結構普遍都有人力不足、老年化的趨勢,數位轉型勢在必行。然而,要導入新技術的成本,是 80 的小農小漁都負擔不起的。由於環境因素有太多不確定因素,如氣候的變遷、水質變化等等,都高度倚賴經驗來處理。因此,最嚴峻的挑戰,來自於農漁民退休而年輕農漁民又不及接班,多年的經驗因無法傳承而失傳。 智慧農漁業數位分身,持續最佳化不停機 「數位分身」是一個結合 AI 人工智慧,與 HI 工匠智慧的新興技術,國際研究機構 Gartner 連續三年將其評為全球未來關鍵十大技術之一。經濟部技術處在 2016 年就開始布局數位分身的研發,認為領域產業除了自動化效率之外,同時也需要將各產業的經驗技藝數位保存下來,建構 AI 與 HI 交互學習與最佳化的人機協同技術。以水產養殖這個領域來說,透過「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。利用各種水質數據所建構出的「設施因子」、魚、蝦體影像的影像資料、病徵影像等等的「生長因子」各種數位資料的分析,加上養殖漁民的「行為決策」來訓練 AI 人工智慧,可以得出水質管理、水產生長管理、水產疾病管理等等最佳化模型。 「魚電共生魚塭」的 AIoT (人工智慧物聯網 Artificial Internet of Things)的「數位分身」,將漁民的種種隱性知識數位化。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計) 將這些 AI 管理模型組合起來,就成為了高存活率、高換肉率的智慧養殖解決方案。養殖的整個過程都有數位化的監控資料、品質可分析、而且產銷履歷甚至可以回溯至養殖初期,藉以大幅提升水產品質、價值以及產量。 雖然前景看好,但是仍然有著重重挑戰 資策會服創所與「數位分身」的緣份,是由 2018 年時經濟部技術處支持的前瞻科技專案開始。當時技術處認為各領域產業除了自動化效率之外,也需數位保存領域產業的工藝知識,用以建構 AI 與 HI 交互學習與最佳化的人機協同技術。 後來,行政院農委會農業試驗所接續支持「數位分身」在智慧農業當中的應用。「數位分身技術應用在農業,協助小農經驗數位化積累,並透過群體經驗與人工智慧交互作用,精進農業技藝,解決農業智慧化最大挑戰」。在農業場域當中的「智慧農業數位分身技術」,在產品化之後預期可以提高生產效率 30 ,可以說是前景相當看好。 邱璟明組長:「厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍。」nbsp nbsp Digital Twin Aqua-Solution 後來,與科技養殖產業業者合作,共同獲得經濟部工業局的業界計畫支持,資策會服創所才將數位分身的技術應用在「智慧漁塭」的場域當中。負責養殖漁業的場域應用團隊指出,「在養殖漁塭當中,漁民在面對各種環境改變時的行為決策,往往是不同的。其中,厲害的漁民所作的行為決策,以結果論,硬是要比一般的漁民還要強三倍,例如白蝦的存活率,一般的平均是 10 左右,有些漁民就是可以獲得 30 的高水準產量。如此一來,生產成本降低,賺的錢也是原本的三倍。 數位分身的技術,就是可以將這些達人的隱性知識傳承下來,最終推動整個產業的升級。」 9大感知器、魚體影像以及漁民行為決策組合而成的「數位分身」 為了取得各種養殖場的環境數據,服創所採用了包括了有溶氧、水溫、酸鹼度、鹽度、濁度、氨氮、硝酸鹽、葉綠素 a、ORP Oxidation-Reduction Potential氧化還原電位等九大感知器來監控水質,這些又被稱為「設施因子」。 另外,漁民也會定期把魚、蝦從池中撈上來,或是透過沉水攝影機拍攝水下的養殖物影像。藉以得知目前養殖物的大小,來了解生長狀況,這又被稱為「成長因子」。 「設施因子」、「成長因子」再加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。(示意圖來源:台鹽綠能股份有限公司委託三奕設計顧問有限公司設計)nbsp 有了這兩個因子,在加上漁民在不同情境下會採取的「行為決策」,就可以在雲端伺服器裡面創造一個虛擬的「數位分身」。 在這個好像遊戲一樣的「數位分身」中,我們可以盡情的模擬,藉以找尋不同「設施因子」下,最佳的「行為決策」,藉以取得最佳化的「成長因子」。 換一個比較容易理解的說法,各位讀者不妨想像我們現在有個「開心漁塭」遊戲軟體。其中,漁塭的各種環境參數,都是由真實情況所記錄下來的。我們也紀錄下每個「開心漁塭」玩家在不同環境參數下所做出的行為決策以及最終的成果。當紀錄下來的資料組數量夠多,得到 ML 機器學習( Machine Learning)而來的魚塭數位分身模型,再經由即時數據進行模擬,就可以找出各種最佳化組合。而這個模擬世界,就是「開心漁塭」的「數位分身」。 感知器容易損壞,如何解決 然而,研發的過程總是有些挑戰。例如水下的感知器如水溫和溶氧感知器,經常由於藻類增生而損壞。水下紀錄魚體大小的攝影機,也經常因為池底泥沙或藻類污染而模糊不清,無法辨識。 為了克服這些感知器的損壞問題,有兩個方案,一是定期從池中打水上來經過感知器來偵測,二是將感知器製作成一個盒子,每天定期泡入養殖池當中用以偵測水質。 至於魚體和蝦體的生長狀況,只需要漁民每日定期打撈上來拍照量測即可。成本低而且有效。 服創所的邱組長說:「這些感知器的損壞問題,是個成本問題,雖然說帶來的效益很高,但是若成本太高,漁民不願意採納也失去意義了。我們目前正在研發 9 合 1 的水質偵測盒子,成功整合完成之後,就可以準備量產,並且以銷售盒子加上連線月租費的方式來商業運作。我們目前已經非常接近完成整合,非常歡迎廠商來洽談合作」 漁民行為決策難以紀錄的困難 另外一個挑戰來自於漁民,部份漁民會自覺的紀錄每天觀察的水質以及環境指標,並且紀錄自己的操作策略和結果。但是,並不是每個漁民都會這樣操作,這時候,就需要引進 AI 人工智慧當中相當重要的 GAN (Generative adversarial network 生成對抗網路)技術。 GAN 會依據過去的資料,生成漁民的可能策略,也就是「猜」漁民的決策,用以補足漁民沒有輸入的行為決策。若是事後得到漁民補完,也不影響訓練資料集。 得獎技術量產化之後, 300的生產效率不再是遙不可及 「數位分身」技術目前全球應用案例多運用於航太、製造業,目前只有台灣與荷蘭率先投入數位分身在智慧農業的研發。因此,「智慧農業數位分身」獲美國 RampD全球百大科技研發獎也是國內技術領先的證明。目前正在完成整合的水質監控盒以及整套解決方案,在產品化後預期提高生產效率 300。 未來「數位分身」技術不只是可以應用於農業和養殖漁業當中,還可以擴展至原本仰賴「隱性知識」的產業當中,如製茶、漁業等等。由於全程數據化,品質不再是靠著經驗以及「看天吃飯」。藉此,可以提高農民的「智慧化監控」和「精準化生產」科技層次,除了提昇傳統農漁業的生產力,也很有機會達成永續經營,促成整個產業升級,提昇年輕人回鄉參與農漁業的誘因。 參考資料:智慧製造的關鍵拼圖加速「數位分身」實現的創新感測技術-數位時代

筆資訊
總筆數:76, 共9頁