精選案例

11
2021.10
【110年 應用案例】 汙水處理的救星 結合大數據與AI技術打開環保產業另一片天

隨著水資源枯竭與環保需求,汙水處理廠導入AI技術來協助觀測預警的需求日益增加,中欣行的汙水處理結合大數據與AI技術,打開環保產業另一片天,未來除了提升汙水處理產業的科技動能,更能夠推廣到其他類型產業,促進科技與經濟發展。 創立於民國69年的中欣工程行後更名為中欣行股份有限公司,為國內操作維護專業領域最具規模及技術之大型環保公司。中欣行進行的污水下水道系統操作維護工作實績遍佈全台,包括科學園區、工業區、國際航空站、學校、集合式住宅、國家公園及工廠等。 汙水廠導入AI系統 精準縮減加藥時間與降低水質超標罰款風險 中欣行於位於新竹科學園區汙水處理廠導入「AOMBR碳源與曝氣之智能強化控制系統開發」,能精準預測風量控制與縮減加藥時間,降低動輒上百萬的罰款風險。 中欣行表示,因應先進產業蓬勃發展及放流水標準漸趨嚴格,當設備控制失之毫釐,水質將差之千里。 近年污水處理設施多已加入設備自動控制之功能,現場狀況卻常常與學理略有偏差,導致很多情況下良好的處理技術需因地制宜,時時滾動時時調整,方能達到良好的出流水質控制。「放流水的水質越來越好,操作人員壓力只會越來越大。這是中欣行最大的痛點」,一位內部主管不諱言地說。 定期的水質檢測與設備保養維護,能確保放流水低於法規標準。 也就是說,每天操作人員需掌握設備與水質狀況,若有突發的進流水質異常或設備跳機,問題環環相扣下就會產生污染,所以每天除了做好維護保養與檢測的工作,更需要緊盯儀表板隨時確認系統正常,不僅耗費人力也耗費精神。 中欣行的現場操作人員24小時輪班,時時盯著放流水的質量監測,加上要採檢水質進化驗室檢測分析,一旦汙水處理值未符合要求,就需要受到環保單位與受託單位的行政與契約罰款,也對對於員工心理造成不小的壓力。 中欣行長期以來建立累積的水質資料與員工間傳承的豐富經驗,已能全盤瞭解整個系統的操作特性,也能透過設備或水質資料的關鍵訊號,抓出處理單元的問題。如果能透過AI技術導入,代替人力檢測汙水來源,透過發生預警訊號進行系統性的評估,就能夠大大減輕人員的壓力。 反應時間由8小時縮短至4小時 節省一半時間 於是,中欣行導入「AOMBR碳源與曝氣之智能強化控制系統開發」,運用所累積的汙水數據資料,加上操作人員現場經驗的口述,透過AI技術的輔助與環境工程學理的支持,便能有效控制生物處理單元中重要的關鍵參數:碳源加藥量與曝氣量,透過污水處理的AI化,使污染物去除、微生物生長、設備節能及操作節藥之間取得平衡,獲得合理化的操作控制參數。 水處理碳源及曝氣參數調整步驟從數據蒐集、模型訓練到預測驗證。 長期來看,納入歷史資料的計算後,確認處理系統承受能力的上下限,AI便能在已知的邊界條件範圍中,不僅記錄過去曾經發生水質與設備作動特徵,更能透過模式預測,找出最佳解法,提供藥品使用、能源節用、減少溫室氣體排放及去除污染物的最佳成效。 根據中欣行估算,原本因為人工調整參數易造成誤差,控制反應時間需要耗費8小時,透過AI技術導入,除可降低誤差值,也能將控制反應時間縮短至4小時,節省一半左右時間。進而提升人員周轉率,更有效降低員工操作失誤造成的心理壓力,自然也減少水質超標罰款的風險。 Dashboard數位儀表板示意圖

2021-10-11
【111年 應用案例】 優式AI智能割草機器人 搶攻高爾夫藍海市場

一台看似掃地機器人的AI智能割草機器人,在面積達30公頃的高爾夫球場草坪上來回穿梭進行除草工作。這是由國人自主研發與設計的AI智能割草機器人,此種機型搭載全球首創電子圍籬定位技術,可利用高精準定位的GPS功能結合雲端AI計算最割草路徑,已計畫搶攻高爾夫球藍海市場。 這款AI智能割草機器人由成立於2019年的台灣新創公司優式機器人進行研發,優式機器人總經理陳招成曾擔任台灣前5大ODM科技公司的執行副總經理,擅長軟硬整合工作。在他擔任服務型機器人聯盟總召集人時,就深知在少子化、人力漸趨吃緊的情況下,服務型機器人勢必成為高度成長的產業。 新需求》園藝市場規模大 剛性需求殷切 「發展服務型機器人核心技術,一定要找到剛性需求,綜觀歐美國家,人工短缺,然園藝需求增加,園藝工長年短缺7-10」,在此「剛性需求」強烈的情況下,陳招成成立優式機器人公司,第一個產品就是研發AI智能割草機器人。 以國外來說,美國是全球最大的園藝市場,佔全球產值高達30-40,估計約有100萬名園藝工,然近年來皆處於7-10的缺工狀態,遲遲無法改善。主要缺工原因為:人口老化,加上園藝工作靠勞力工作吃重,年輕人不想做。而不像在台灣,歐美國家對於草坪維護十分重視,並明文規定不除草,將觸犯法規予以重罰,因此,AI智能割草機器人的市場發展潛力相當大。 藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔 優式機器人所開發的AI智能割草機器人已研發至第二代,包括國內大學院校及知名美術館使用最新機型M1,同時也在美國包括一些全球知名的高科技公司,及知名的大學院校等實際場域中運行,正進行後續商務合作的洽談中。 優式機器人表示,目前使用的專業RTK系統,可以將原本GPS定位的誤差從數十公尺縮小到2公分左右,讓機器人在戶外也可以精準的移動。簡單設定邊界後,便能透過APP輕鬆地進行作業。 新應用》導入高爾夫球場 解決人力老化及短缺問題 陳招成進一步說明,國土測繪局是RTK的服務商,RTK將定位點的誤差參考圖提供出來,優式機器人透過4G上網,即可抓取特定位置的定位誤差值。再透過優式機器人的AI演算法,將原本一般GPS 10-20公尺誤差值縮短到2公分。定位好之後,優式機器人再運用六軸加速器定位、陀螺儀、輪子的輪差等感測裝置導入,進行軟硬整合工程,搭配輪子的運動模式和地形的契合,才能達到精準的除草路徑規劃。 這款寬度62公分、長度84公分、高度 46公分,重量只有25公斤的智能割草機器人可以在雲端將割草邊界設定完成,可以透過設定避掉水池與沙坑,用AI演算法自動計算出最佳路徑,一小時可除草面積大約是150坪,電池可以連續使用6小時以上,電池續航力是目前全球最高。 除了一般園藝公司外,在經濟部工業局AI計畫團隊的協助下,將優式機器人的AI智能割草機器人導入高爾夫球場的割草應用。 位於台中市太平區的知名高爾夫球場現有場務人員5人,負責整個球場30公頃的草坪、植栽維護、及其他景觀維護工作。但因場務人員平均年齡高達55歲,且長期無法招募到新的場務人員,針對場務人員的老年化及人力的短缺,希望能尋求AI科技的導入來減緩衝擊,因此藉由AI多裝置智慧協作割草感測技術的導入,期望減少場務人員整理球場之負擔。 新挑戰》因應草種不同 需藉由專家系統克服困難 「這款AI智能割草機器人具備低噪音、低汙染、低人力成本及防水、防盜等配置,在割草的過程中,能透過超音波感測器辨識避開障礙物,並同時保持除草品質,維持美觀一致的割草長度」,陳招成接著表示,高爾夫球最重要的是草紋要漂亮、不能有病蟲害。 根據場勘後發現,高爾夫球場地主要分為果嶺、球道及長草區三大區塊,長草區以現行機器人除草沒有問題,20度以內的斜坡道都能夠克服;球道區的短草只能維持兩公分,草種也不同,需要修改刀盤設計;至於果嶺區的草因為影響到推桿速度,不僅要除草,還要壓草至與地面貼合,草的方向要一致,諸多因素均會影響到果嶺指數,這部分需要更多的研究與測試。 AI智能割草機器人能透過超音波感測器辨識避開障礙物,並同時保持除草品質 AI智慧割草機器人內建攝影鏡頭,可以用來偵測草坪的健康狀態,陳招成表示,未來也將導入專家系統,及早判斷草坪是否有病蟲害或水分足夠與否,將草坪健康數據分析提供給客戶參考,可及早防範與因應,以減少災害損失。 本身也是高爾夫球好手的陳招成表示,台灣高爾夫球發展得很好,然而,受到氣候多雨潮濕、有颱風等天候因素影響,與國外一流球場比較,台灣的高爾夫球場土質偏硬,坑洞較多,若智能割草機器人要普遍導入高爾夫球場仍有許多困難必須克服。但因台灣的困難地形造就很好的試煉場所,一旦台灣能夠克服諸多問題順利導入,就能擴展到海外市場,搶攻新的藍海市場商機。 優式機器人總經理陳招成

2022-06-01
【110年 應用案例】 挺進智慧物流5.0 新竹物流醫材配送班表超高效率

傳統物流公司加上AI技術之後,在運送效率提升及運輸成本下降等效益大大提升,尤其是醫材轉運更涉及醫院及病患的服務時效及權益,透過智慧物流的建置,可為醫材業者節省投入建構GDP倉、配多達千萬元之成本。 國內重要物流領導廠商-新竹物流HCT擁有3,500輛車隊、6萬坪倉儲,提供物流、商流、金流、資訊流、流通、倉儲、加工之客製化物流解決方案。每日貨件處理件數達58萬件,最大處理能力每日可達90萬件,轉運效能的提升對於新竹物流而言,至關重要。 醫院醫材運送 需優化現有作業流程與提升系統化、智慧化 尤其是醫院醫材的運送,也面臨到難題。醫材業者需要針對客戶不同產品需求、不同溫層需求、不同配送時效等因素,透過多家物流業者進行出貨與物流作業,高度依賴作業人員的經驗與細心管制,無論是產品出貨過程與實際物流配送過程,需要環環相扣,若有任何人工失誤與錯誤,都會影響醫院與病患的服務時效與權益,因此各家業者與政府及醫院等,都致力於優化現有作業流程與提升系統化、自動化與智慧化程度,以有效降低服務過程中造成的失誤及成本損失。 新竹物流導入AI之前的配送流程。 現行在醫院需求端已有相關業者配合政府推動相關標準化平台作業,透過供應端業者的資料協同作業,改善產品出貨正確性與作業時效,提升需求端的作業品質與管理效益;同時,部分業者也投入企業內部作業流程標準化與系統化,提升業者營運效能與品質。 在貨運物流端方面,物流業者的倉庫出貨人員需要耗費人工進行管控不同的物流出貨作業安排,若因常常接到緊急任務通知,要出貨到醫療院所,往往需要依賴小型區域性物流業者來提供客製化配送服務,除配送時效提升外,並無法導入整合性的資訊化服務。 新上路的GDP醫材法規規範運銷品質,也就是醫材供應商必須進行GDP合規認證,必須導入符合GDP法令規範之倉儲與物流服務業者,如此一來,區域性小型公司將被淘汰,因此,新竹物流透過經濟部工業局的AI輔導計畫案協助,除延伸既有GDP符合法令的倉儲物流服務外,將進一步利用相關數據整合與最佳化AI技術,協助醫材業者簡化改善物流配送最佳化作業。 複雜的物流難題 運用Simulated AnnealingSA演算法求解 為能滿足新的「醫療器材優良運銷準則」中對於醫療器材優良運銷系統建構的要求,新竹物流除了積極導入新式物流車,更將導入人工智慧中數學最佳化技術,以協助公司在每日全國營業據點以及轉運站進行智慧班次排程規劃,期望以最佳化的車班進行醫材在營業據點間的對開,或是區域間的轉運,以提高醫材在運銷過程中的效率。 目前醫材在新竹物流的轉運過程中,使用可分離式拖車頭與貨櫃。每個營業所及轉運站由於區位與幾何設計不同,以及人員數量不同,單位時間內的吞吐量也有差異;再加上每天的貨況大小、目的地皆不相同,面對無法確定且需求不同的變化,拖車頭及貨櫃的派遣狀況便隨之改變。 在此情況下,新竹物流僅能根據以往的經驗來進行各個衛星所之發車班表,並根據此班表視每日不同變化之貨物需求量進行調整。 因為是根據經驗法則進行排班,所以,班表往往不能兼顧全盤的變化與考量,使得目前發車班表仍然存在著可以改善的空間。。 貨物遞送規劃本質上為一NP-Hard難題,因此難以用傳統的解析解法,新竹物流結合奇點無限公司採用Simulated AnnealingSA演算法進行求解。 新竹物流導入的新物流服務為「GDP櫃班次規劃」。所謂的班次規劃,指的是根據未來對於站所間醫材貨件的預估量,進行站所間貨櫃車班的班表規劃,目的是讓醫材能夠如期如質抵達,並且讓新竹物流在場站作業、車輛數、行駛里程得到最高的效益。 新竹物流導入AI最佳化班次規劃,從其起點至終點間建構出一條最有效率的運送路線。 新竹物流導入「最佳化班次規劃」服務 降低5運輸成本 導入方式是利用雲端軟體服務,由新竹物流定期輸入站所間醫材貨件之「交互件數表」至「最佳化班次規劃」服務後,設定好演算參數即可產生GDP櫃班次表。同時發展新竹物流醫材班表系統,使新竹物流醫材運務單位能透過交互件數表編制適合班表。在相同服務水準的前提下,預估可降低運輸成本5,為醫材業者節省下建構GDP倉儲、配輸成本達千萬元。 醫材由於其對於衛生、溫度的要求,以及其易碎性等特色,因此運輸與轉運的時間越少越好,越少時間暴露在外,則醫材配曝險程度越低,然而由於仍須考量物流效率與成本。AI將每個需要運送的貨物,從其起點至終點間建構出一條最有效率的路線,即可有效率地完成每日的運務作業。 因應未來產業物流高度發展需求,其中配送與轉運AI最佳化將是關鍵議題,透過本計畫將成立專案推動組織,配置AI技術、IT與流程領域人才,累積落地經驗後,逐步擴大AI實際應用場域,全面優化轉型新竹物流的營運體系,並結盟AIOT與各領域AI夥伴加速與擴大效益之達成。

2021-10-14
【109年 應用案例】 紡織業挑戰快時尚,AI庫存預測降低三成五誤差率

服飾快時尚、少量多樣、短交期 紡織產業面臨服飾品牌快時尚趨勢衝擊整體紡織供應鏈,全球品牌通路都推動零庫存、短交期與少量客製化,生產時間、品質、成本難以平衡,面對品牌商對ODM的預測與實際需求常有落差,造成物料管理與大量庫存成本積壓的問題。 由於客戶預測需求不準確,常導致備料困難,備料太多會增加積存量、備料太少可能延誤交期。本計畫規劃以國內一級供應製造商為對象,建立各客戶專屬的物料需求AI預測模型 AI計算銷售趨勢,進而預測需求 輔導團隊與神通資訊科技合作,計畫主要透過LSTM演算法來做為AI的基礎,主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計上使用簡單迴歸,乃至複雜的『時間序列分析』Time Series Analysis來預測銷售趨勢,因為,當期的銷售量通常會與前期的銷售量有緊密的關係,除非公司發生重大事件,否則,應該會循著規律變化。 銷售量預測的樣態很多種,包括營收、利潤、來客數、遊園人數、銷售產品數金額、等等,都屬於同一範疇,以下會以工廠的每月出貨批數為例,使用 LSTM 模型預測下個月的出貨批數。 物料需求分析方案執行架構 本計畫規劃以客戶為對象,建立各客戶專屬的物料需求AI預測模型,規劃階段使用三種機器學習演算法試作物料需求AI預測模型: Logistic Regression Algorithm 羅吉斯迴歸 Gradient Boosting Algorithm 梯度提升法 Deep Learning Algorithm 深度學習法 物料需求AI預測模型規劃 需求預測誤差自最高70降至35,降低備料庫存量 本計畫將客戶預估需求、所需物料類別、供應來源、客戶交期等資訊,以機器學習的方式,建立主要原物料的採購預估系統,將該客戶前五大國際客戶需求量預測誤差自最高70降至35,大幅減輕庫存之備料量。

2020-03-30

應用案例總覽

【導入案例】AOI封銲製程全面檢測AI化,減少50篩檢量
【109年 應用案例】 AOI封銲製程全面檢測AI化,減少50%篩檢量

微型化產品、客戶要求全檢 台中某國內上市電子元件業者,因應5G世代將為石英元件產業注入新的成長動能,尤其在5G商機爆發下,石英元件的重要性將比過去在消費性產品上扮演更重要的角色。 針對產品不良因素的分析能力,頻率元件走向微型化的同時亦要求高精度,因此製程環節更容易遭受細微因子影響,業者需掌握更全面包括人機料法環各環節數據進行分析,因此需設法如何在複雜生產環境中,儘快找出關鍵不良因素。 瑕疵認知不同,品質一致性難提升 隨著電子元器件的微小化、複雜化趨勢,在產線中視覺檢測有四大主要功能,包括量測、辨識、定位、檢查等,而檢查是所有功能中最困難的部分絕大部分電子製造廠商仍然依賴於傳統人工目視檢查。 以目前AOI(自動光學檢測)技術滲透率最高的PCB行業為例,曾有研究機構做過調查,當兩個人檢查相同的PCBA板四次時,他們的相互認同率少於28,認同自己的只有大約 44左右,由於現場人員對瑕疵的認知不同,因此即便是已然自動化的機器視覺,仍會存在因系統設定或現場品管人員不同,導致出貨產品品質無法一致性的問題 偲捷科技檢測AI化,降低過篩率2030 輔導團隊與偲捷科技合作,針對其封銲製程下的瑕疵,以CNN Convolutional Neural Network 為基礎,透過整合多個模型的方式導入AI辨識模組,利用視覺辨識技術輔助AOI檢測的後續優化,以提高檢測設備的辨識正確率。 預估導入AI視覺辨識後,將可有效降低過篩機率至2030。因此產業在需要更智慧化的檢測系統條件下,開始應用AI技術來輔助AOI設備進行後續篩檢的優化。 AI化AOI 檢測解決方案Cross-Model設計概念 封銲AOI檢測試煉結果 降低誤殺率,減少目檢員50篩檢量 本計畫以深度學習網路架構,重新分類經檢測出的瑕疵,包括真瑕疵與假瑕疵,並可將真瑕疵與假瑕疵進一步分類,降低傳統AOI方案的誤殺率,預期可再協助目檢員減少50以上的檢測篩檢量,解決現行生產線仍需仰賴大量人力複檢、效率低落的問題。 未來目標結合機械手臂,進行自動上下料,並針對瑕疵成因進行分析,優化生產製程參數。

【導入案例】處方箋智慧辨識 社區藥局藥師的小幫手
【109年 應用案例】 處方箋智慧辨識 社區藥局藥師的小幫手

AI應用在醫療健康服務應用上蓬勃發展,對於與民眾第一線接觸的社藥局裡,藥師是負責提供藥物知識及藥事服務的專業人員,但社區藥局執業藥師需要人工處理處方箋申報系統登打作業,如果花費太多時間處理例行的作業,就排擠了提供藥品衛教、服藥成效追蹤、及更多專業藥事服務的時間,AI應用要如何協助社區藥局成為藥師的小幫手呢 繁瑣、耗時、重複性高的工作、以及AI解方 藥局經營備受新環境威脅,市場新商機設限,藥局的經營成本高,獲利方式有限。一人藥師的社區藥局數位化升級困難,藥師需要身兼數種身份以求對社區住戶健康程度瞭解,且繁瑣、耗時、重複性高的工作阻礙服務品質的精致度,難以全年無休回應客戶。 智慧藥師助理服務平台 由健康力科技的智慧藥師助理服務平台之系統架構,搭配行動裝置程式「智慧好醫」App及系統「智慧好藥師後台」以及整合外部研發功能資源「OCR處方箋識別」及「RPA流程機器人訓練模組RPA library」,主要應用於診所及藥局相關基層醫療院所。旨在解決基層診藥通路面臨的總總問題及經營痛點,其中包含運用數位科技提升工作效率、拉近民眾與診藥機構間的距離及醫病關係,達到更好的經營及人力效益。另外民眾還能增加用藥安全及提升相關藥物知識,也同時減輕藥師日常在藥事服務上的負擔。 智慧藥師助理服項目 現階段資策會團隊輔導媒合藥局資訊系統業者與AI新創團隊,主要除了研發處方箋影像智慧識別技術外,藥物影像辨別及藥物排程智慧提示技術等,都成為研發重點,同時已導入大台北12家社區藥局進行實證。 透過台灣年輕藥師協會協助推廣,已有約100餘家社區藥局負責人表示有意願導入相關技術,一旦這些服務平台系統整合完成,未來將成為推動台灣社區藥局藥事服務AI化的典範。

【導入案例】AI助被動元件建構最佳AOI參數模型,降低過篩元件生產成本,年省250萬元
【109年 應用案例】 AI助被動元件建構最佳AOI參數模型,降低過篩元件生產成本,年省250萬元

傳統AOI以限度樣本影像進行檢料,面臨產品過篩率過高問題 電子零組件製造業,在針對產品外觀瑕疵檢測上,經常使用AOIAutomated Optical Inspection設備來進行量測。長久以來,AOI量測設備在影像處理上,均是利用有限的限度樣本影像,透過不同的外在光源、角度,來與產品進行外觀比對。 這樣的比對方式,雖然可將產品外觀瑕疵篩檢,做到自動化。但由於現行技術限制,產品在批次轉換之間,經常存在光源參數的調機問題,若又碰上新手的調機技師,就會造成機台稼動率的下降,以及產品過篩率過高的問題。 人工智慧影像機器學習成熟,AOI製程找到新契機 台灣被動元件目前在晶片電阻及MLCC,2019年市占分居全球前2名,長期來看,各車廠陸續推出電動車與智慧車,各國也陸續建置5G 相關設備,都將進一步推動被動元件在未來出貨數量。因此,除了擴增新產品線外,如何幫助現有產品提升相關競爭力,將會是未來產業國際競爭的關鍵。 動元件製程中,AOI檢測為共通性站別之一,現階段均採限度樣本影像,來進行相關外觀比對。但常在產品批次與批次轉換之間,存在光源參數的調機問題,而調機狀況皆會影響每批次良品過篩誤篩的狀況出現。現行產業在每批次不良品當中,就有平均20的過篩誤篩發生。 憑藉中山大學產發中心深耕南部十多年的輔導能量,針對被動元件產業之痛點,媒合工研院AI影像辨識技術單位,降低AOI製程過篩,並減少人力調機所造成之誤差。 以影像辨識技術降低AOI過篩發生 此次工研院參與的技術單位,在AI模組建立上,利用影像辨識技術,針對被動元件製程產品,進行AOI技術開發。 開發過程先由案例廠提供產品外觀影像及相對應之調機參數,搭配現行產線人員調機邏輯,進行產品資料集建構,進一步建立AI模型。而在產線實測規劃上,先以影像辨識率為首要,藉由影像偵測、搜尋標籤的方式,進一步投透過AI模組比對,輸出可供線上人員參考的AOI調機參數。 影像分析示意圖 後續也希望透過機器學習的幫助,完成調機參數AI學習曲線,進一步降低產品外觀瑕疵檢測之產品過篩率,也同步解決現場專業技術人才斷層問題,並提升產品良率。 導入機器學習前後情境 推動製程AI應用與智慧化,打造無人工廠發展基礎 未來期能透過AI HUB的輔導,加速先進製程技術應用,建立被動元件各站製程AI指標,有助於國內被動元件生產高品質產品,提高產品良率與價格。以創新的思維提升產業附加價值,繼續帶領被動元件產業向前邁進。

【導入案例】動態車牌辨識系統 省時省力方便管理
【109年 應用案例】 動態車牌辨識系統 省時省力方便管理

從事馬達相關設備製造長達40年的九德松益公司,為有效監控進出廠區的車輛,導入辨識率高達989的動態車牌辨識系統,透過AI技術,讓車輛管理省時又省力。 車牌辨識系統是一種智慧影像分析的基本應用,利用攝影機,擷取車牌的影像後,將影像進行分析與演算,達到車牌辨識的應用。提供車牌辨識服務的康橋科技成立於 2008 年,由一群 LED 研發團隊,及軟體開發團隊所組成,致力於 LED 產品應用、開發 LED 投射燈車牌辨識,及 Etag 兩合一整合系統,提供給國內外公共工程標案為主。 此次,資策會AI團隊與台灣能源技術服務產業發展協會合作,探尋 車牌辨識技術實證場域,發現九德松益公司現階段遭遇到的問題包含下列三項: 1 公司大門目前無柵欄機或其他管制設備,進出車輛完全靠人力管制及記錄,紀錄方式也是完全人工處理,如果人力不在現場時,車輛進出完全無法管制 2 當有狀況時,現有的監控系統必須慢慢地去調閱資料尋找有問題的車輛,非常耗時且不方便 3 找到影像時車牌部分也無法清楚辨識,找到也沒有辦法確認車主 解決三大問題 提供四大功能 了解到企業實際需求之後,依據康橋科技所建立車牌辨識系統架構,實際到場域進行實證,在管理室設置監控電腦。 康橋科技車牌辨識系統架構 車牌辨識系統於安裝後之使用現況,主要完成功能如下: 1 車輛進出時,透過高解析智慧型攝影機,可以辨識出車牌及影像,紀錄車牌號碼及車輛進出的現況 2 當需要調閱檔案時,可以利用時間搜索車輛資料,或是搜索車牌資料,可以直接找出需要的影像檔案,可省去不少時間 3 由於使用高解析智慧型攝影機,對於影像有大幅度的提升,如有狀況可以清楚辨識 4 當車牌資料有登記時,還可以建置黑白名單資料庫,方便警衛人員管理 車牌辨識的優點是可以將車輛進出管制全面自動化,減低人力成本;而使用軟體來辨識進出車輛,車牌不易遭人冒用,同時免除遙控器、感應磁扣遺失與轉借外人之困擾;進出不須按遙控器、不用搖下車窗,遠距離車牌辨識,行進之間即可開閘門,省去停車等待的時間。 康橋科技車牌辨識系統設置於管理室 資策會AI團隊表示,該團隊不斷與相關公協會合作,從挖掘企業需求、訂定主題、鏈結團隊、導入實證等有系統的方法,來協助有需求缺口的企業,媒合AI技術研發團隊,導入AI技術,解決產業問題,來達到產業AI化的目標,未來,將持續協助企業運用科技工具突破經營困境。

【導入案例】核電廠「不玩了」 安全管理智慧化更重要
【109年 應用案例】 核電廠「不玩了」 安全管理智慧化更重要

廠區安全為工業安全的一環,目前的做法為設置許多監視器配合安全人員的人為監控來提供資訊,但人員監控有其極限,若能建置 AI 系統輔助進行異常行為與臉部辨識,可以更有效協助安全人員的監控工作,彌補人為監控的死角。 位於新北市石門區的核一廠,背山面海、風景秀麗,然而,此一全台首座核電廠將邁入除役期,即將成為歷史。適逢核電廠正準備進行除役作業,未來將有許多外部廠商進出施工,出入管理複雜,外部廠商施工也需要持續進行安全監控以確保核能安全;另外,核四廠雖正在封存中,但仍有敏感性區域與降低人員駐點的需要,因此對於安全管理的智慧化有急迫的需求。 資策會AI團隊在台灣核能級產業發展協會的協助下,以台灣電力公司核一廠場域為目標,欲解決低人力配置狀況下,安全與工安之相關議題。根據訪談之後,歸納出核一廠導入 AI 的技術需求,包含人員進出管制、與人員作業與廠區的安全性監控等。 AI人臉辨識 解決人員進出管制與廠區安全監控兩大難題 在人員進出管制部分,在核電廠部署臉部辨識系統,藉由人臉的唯一性與AI 的高辨識率,提升核電廠的人員進出管制成效;在人員作業與廠區安全部分,也將部署異常行為偵測系統,藉由監視器視訊提供的人員姿態,以 AI 辨識異常或危險行為,即時提供資訊回報給安全人員進行處理。 經過資策會媒合,選定旺捷智能感知公司(簡稱旺捷)的解決方案,分別投入臉部識別與姿態識別兩項功能之開發。旺捷智能與資策會數次討論,最後導入Google的Facenet與Posenet兩項演算法進行系統實作,相對於其他類似的演算法,Facenet每張人臉僅需要128個維度就可以達到最佳效能,所需要的辨識照片也只需要數張,對建立工業級的臉部識別系統來說非常適合,這也是最終決定所採取的方案;Posenet運用於動作偵測,透過Data Processing Unit(以下稱DPU)將資料轉換為機器學習演算法ndash支援向量機(Support Vector Machine,SVM)能夠接受的格式,進行人體姿態辨識,預測方式為二元分類,分別為跌倒以及非跌倒。 運用可視化頁面 管理介面一目瞭然 兩個系統的使用者介面以Python的網頁框架Flask進行實作,透過網頁服務來適應不同作業系統,達到跨平台系統的目的。眼鏡App則以Unity進行開發,存取網頁資訊。 近年來,由於AI 技術的進步,人臉識別已逐漸應用在安全管理,人臉特徵的唯一性可以去除 RFID 變造的風險,與其他生物資訊辨識 指紋、聲紋 相較之下的高正確率、完全客觀沒有人情因素、系統易於架設與維護、運作時可完全自動無需額外人力等。無需置疑地,在安全管理機制中,加入臉部辨識系統可以大幅提高廠區的安全係數,同時降低管理的困難。 人體姿態辨識在實驗室中的運作狀態 台灣有四座核電廠,需要負擔龐大的管理成本,若能持續導入AI技術解決方案,不僅可降低人力成本,安全管理的效益也能大幅提升。

【導入案例】AI導入營建業 減少工安意外 安心看得見
【109年 應用案例】 AI導入營建業 減少工安意外 安心看得見

營建業是台灣的火車頭工業,撐起營造、裝潢、修繕等產業一片天,然而,營造業的職災發生率偏高,成為業者及勞工心裡的痛,透過AI裝備辨識導入營造業,讓企業放心、勞工安心,共創雙贏。 根據勞動部2017年職業傷害統計,各行各業勞工發生職業傷害千人率平均為2773,但是位居第一名的營造業職業災害千人率卻達到10036,識平均值的36倍,屬於發生職業傷害的高危險群。若能從源頭預警做起,將可有效降低職災發生率。 有鑑於此,財團法人資訊工業策進會受經濟部工業局委託執行AI計畫,就將AI技術導入營造業列入重點實證產業之一,選定台灣具知名度的大型營造商,將佳能企業安全帽正確配戴辨識方案應用於企業,以期有效降低職災發生率。 智慧辨識配戴安全帽 解企業主的痛點 營造業高階主管強調,與各產業相較,因營造業勞工主要的工作環境為建築工地,安全衛生的風險較高,很多的風險來自於勞工未正確配戴及使用個人防護工具,例如戴安全帽等,如果要使用人力全程監督勞工,耗時費力且效果十分有限,若能應用AI技術導入工地進行智慧監控,不但能節省公司人力資源,也保障勞工安全,一舉兩得。 事實上,為保護勞工於作業中的安全,當勞工進入工地作業時,營造廠都會要求勞工需要正確穿戴安全帽,但有戴上安全帽不代表正確佩戴,為避免安全帽於作業過程中脫落,佩戴好安全帽後,需將頤帶確實繫於下巴的正下方, 工地用安全帽正確佩戴方法 然而,在工地現場,有許多外籍勞工便宜行事,並未正確配戴安全帽,若要安排監督人力,耗費過多人事資源,在資策會團隊的媒合下,導入佳能企業的影像辨識技術。 為能確認裝設影像辨識攝影機的最佳位置,雙方團隊先進行現場勘察,也同步收集工地現場使用的各類型安全帽;其後於工地、工區電梯出入口裝設一般攝影機收集現場人員畫面,以提供佳能建置正確、錯誤佩戴安全帽之模型,讓影像辨識程式進行學習,並由佳能工程師定期至工地回收影像,而後待影像辨識程式的辨識率達一定程度後,再將影像辨識攝影機裝設於工地現場。 佳能工地安全帽資料搜集攝影機設置 有效提升辨識率 具體落實工地安全 在辨識率上,因現階段國內尚無辨識安全帽正確配戴之相關技術,因此,辨識的程式均由佳能公司重新建置並訓練,加上實際安裝地點的環境背景更加複雜,將影響到辨識效果。 未來,透過機器學習,將可大大提高整體辨識率,使得勞工配戴安全帽的安全措施可以具體落實。 在AI辨識技術導入營造業工安領域的同時,也可以結合行動裝置進行預警,也就是說,在攝影機取得辨識資料,進行判讀之後,可立即將辨識結果推播到工安主管等特定人員的手機、平板電腦,或是門禁設施進行連結,一旦發現員工未能正確配戴安全帽,在第一時間通報相關人員,甚至是門禁阻止其進入,直到員工正確配戴安全帽才准予進入等,未來的應用方向仍具備相當的發展潛力。

【導入案例】AI點點名 掌握長者進出 解決日照中心人力荒
【109年 應用案例】 AI點點名 掌握長者進出 解決日照中心人力荒

銀色風暴來襲 台灣將在2026年邁入「超高齡社會」,全台長照中心鬧「人力荒」,AI人臉辨識導入長照中心場域,點點名靠AI,日照中心好安心。 台灣人口老化到底有多嚴重先來看一個數字,台灣在2018年高齡人口(65歲以上人口)比例已超過14,正式邁入高齡社會。 此外,根據國發會推估,台灣將在2026年邁入「超高齡社會(高齡人口比例超過20)」,老化速度甚至遠快於日本。同時國發會也預測,2065年台灣高齡人口比例將超過4成,屆時台灣每12位生產者需負擔1位老年人口。面對龐大的老年人口,長照中心的人力需求勢必嚴重吃緊。 台灣長照機構資訊化不足 亟待導入AI技術解決人力荒 在台灣擁有800家會員的台灣長期照顧協會全國聯合會副理事長簡文生表示,相對於醫療產業不斷導入尖端科技及最新技術,台灣長照產業並未受惠於台灣國際級的科技研發成就,中小型長照機構資訊化程度不足,均仰賴人力作業,若能導入AI技術解決轉型問題,對於長照機構及高齡者的需求助益很大。 對於產業的急切呼求,經濟部工業局及資策會聽到了,積極協助尋求解決方案。首先,資策會先聚焦需求,協同長照協會全國聯合會共同訪視多家長照機構了解問題所在,多數場域業者均表示,日照中心每日照顧的銀髮長者必須確實掌握其出席狀況,以符合長照20的補助規範。然而,每天一早的點名工作,就是工作人員的一大夢魘。 「早上7點不到,被照顧者有的被推著輪椅進來,有的自己拄著拐杖進來,有的由家人開車從後門送進來,有的則是登記要來,卻不見人影,門口有銀髮長輩、家屬,照護人員等,鬧哄哄地,連對方的聲音都聽不到,等到一一點完名,回過頭來,才發現早上買的早餐還擱在桌上hellip」,這是一位日照中心照護者的日常。 AI點點名 解決現行人力不足與資訊錯誤的困擾 日照中心普遍存在著每日照顧的銀髮長者來去時間不定、簽到時間無規律的問題。現行業者僅能以人工登記方式,處理簽到、簽退事務。而照護場域中有多個出入口、場域範圍大且跨樓層,進出人員包含照護人員、行政人員、長輩及其家屬、訪客等,出入人員複雜,無法進行有效管控。 此外,由於人工點名可能忙中出錯,也可能產生補助人數造假的誤會,對於衛服部及業者雙方都產生困擾。因此,業者深切期望能夠藉由AI裝置智慧化服務協助輔助照服人員,減少人工紙本登記,即可將行政人力時間省下來,以便協助更多的照服長者。 在資策會的媒合與輔導協助之下,安全監控業者奇卓科技與杭特電子將人臉辨識技術導入長照機構,在門口設置人臉辨識設備,同時為了節省長照機構的成本負擔,創新長期租賃的新商業模式運作,不但解決中小型長照機構預算、人力不足的問題,也協助電子裝置業者找到合適的場域實證,有效解決供需雙方的問題。 奇卓科技解決方案導入,左為與場域人員討論安裝細節,右為偵測畫面 杭特電子解決方案辨識畫面 AI人臉辨識技術一日千里,不僅可以取代長照中心的人工點名機制,也能在照護人員夜間查房時,掌握銀髮長者的行蹤,未來在長照中心的應用將持續擴展。

【導入案例】防範於未然 跌倒及危險區域偵測維護長者安全
【109年 應用案例】 防範於未然 跌倒及危險區域偵測維護長者安全

我們都知道,老人家最怕跌倒,一旦跌倒了,可能出現受傷甚至危害生命等不可收拾的後果,或者是,跌倒之後昏迷,沒有被人發現,也可能產生無可挽回的遺憾。為防範於未然,透過AI技術跌倒或危險區域的偵測,提前預警,將可大大保障長者的生命安全。 根據國外的統計資料顯示,在65歲以上的人群中,每年跌倒發生率為30-40。也就是說,每年,10個老年人中就有3個或4個會發生跌倒。事實上,跌倒,也是老年人受傷最普遍的原因。此外,被開水燙到、浴室滑倒等在危險區域的行為偵測警示,都可以大大降低銀髮長者的受傷機率。 為了讓高齡者活得長壽又健康,減少意外傷害的發生,資策會AI團隊積極媒合長期照護中心與AI裝置業者,希望找出銀髮長者最迫切的服務,而長照中心宥於人力與資源,無法面面俱到照顧的地方。 事故傷害名列10大死因之一 預警系統建置為當務之急 據統計,在65歲以上族群的10大死因中,不管是在台灣或是在美國,其中之一都是事故傷害如跌倒等。老人跌倒後往往活動力和生活品質下降,除了可能身體受傷如骨折流血外,也可能產生心理陰影,使得老人家不願外出活動、導致身體變虛。因此,如何防範跌倒,以及即時預警,將跌倒的傷害降到最低,是長照的重要議題。 現階段資策會團隊輔導媒合銀髮照護業者與AI裝置業者,主要除了研發AI長者人臉影像識別技術外,影像跌倒偵測技術及危險區域行為偵測技術等,都成為研發重點,同時已導入北中南三個銀髮照護場域進行實證。 媒合智慧監控廠商與場域合作 有效提升辨識率 提供AI技術的奇卓科技副總經理吳佳琛表示,奇卓科技智慧監控技術在跌倒偵測、人臉辨識及電子圍籬等方面投入研究,技術成熟,但需要有實證場域,逐步累積大數據,才能讓「英雄有用武之地」,透過資策會引介,在長照機構場域中實證,將大大提高辨識率,對於後續應用有相當大的助益。 奇卓科技開發之跌倒偵測解決方案 此外,從事安全監控30多年的杭特電子郭宏達協理也指出,智慧監控成功的最大關鍵在於數據的累積及智慧影像分析,建立人工智慧資料庫來進行各項應用。例如徘徊偵測,根據觀察被攝者的肢體動作,來初步判定是否為身體不適或異常狀況,可即時通報監控中心。或是當長者靠近飲水機或熱水器等危險區域,也能快速通報服務人員前往協助,避免發生意外事故,均能有效達到預警效果。 杭特電子開發之跌倒偵測解決方案 透過在台灣擁有800家會員的台灣長期照顧協會全國聯合會協助推廣,現已有約100餘家長照中小型機構表示有意願導入相關技術,一旦這些場域建置完成,未來將成為推動台灣長照AI化的種子。

【導入案例】從一顆包子窺看如何應用AI減少50報廢率,為冷凍食品提升60生產效能
【109年 應用案例】 從一顆包子窺看如何應用AI減少50%報廢率,為冷凍食品提升60%生產效能

從產線到餐桌,吃進去的衛生管理由誰把關 近幾年有關食品安全新聞報導層出不窮,如即期品改標、洪瑞珍食物中毒等事件,不難發現民眾對於吃進去的食品衛生愈發重視,但由於各個食品加工的品管方式不同,容易有潛在風險。 世界衛生組織(WHO)就曾指出,不安全的食物與飲水,每年會造成200萬人的身體損傷,也因此國際市場要求食品加工企業必須建立商品可追溯體系,所以國內食品加工大廠也想建立生產追溯系統,期望能儘速反向溯源到問題原物料,並啟動追回和銷毀問題食品。 看得見的安心,落實生產透明化 國內某食品大廠以生冷凍食品、即時料理等商品,國外市場版圖已擴展至北美、紐澳、日本hellip等國,在國內對於食品管理的推動也是不落人後,現已取得HACCP、ISO22000、ISO14001等食品認證。 食品生產在人力需求較高,因此也容易有工作疲勞而影響品質,再加上生產線對於生產數量、流程與時間點紀錄不明確,在出現不良品時難以追溯生產資訊,造成食品安全管理上的漏洞只得整批報廢。 為此,中山大學產發中心應用自身的輔導資源,協助該食品大廠解決食安管理的問題,規劃運用AI技術蒐取生產數據,同時建立食品生產的防弊與回溯。 製程智慧化助力食品安全 烘焙類的食品加工雖自動化程度不高,但本案之食品廠對於提升產線自動化程度、導入智慧製造方面有意願,對於企業來說,溯源體制不僅能樹立品牌形象,提升產品、品牌價值,對於消費者而言,生產線的透明化讓人更加放心。 因此,中山產發中心媒合AI技術服務商泓格科技,在第一階段規劃導入數據蒐集設備來串聯食品工單資訊,降低人為操作上的資料疏漏,同時透過即時生產資訊看板掌握產線處理流程,確保可能因人為因素造成的生產階段資訊不連貫,使該批產能受到影響。 產線智慧化規劃示意圖 第二階段則於麵糰發酵階段透過深度學習進行大小與體積計算,分析溫度、濕度、發酵時間與產品體積比間的變化關係,並評估後續是否導入AOI異物偵測,於冷凍後建立第二道品管步驟。 成品品管AI化示意圖 食品加工身分證,開啟食安溯源AI時代 在台灣,消費者對生產履歷的認知度和接受度逐步提升,食物由原料供應、加工生產,到流通販賣,都需要能完全掌控,並提供透明資訊,公開食品生產履歷不僅是增加企業與消費者間的信任,同時也是讓台灣的食品安全環境,跟上國際的腳步。 中山大學產發中心將在2020年協助企業導入先進科技的AI應用,記錄原物料從產業到餐桌的全流程數據,監督食品生產過程,成功落實產品溯源,做到加工食品的防弊與回溯,從而對產品建立高規格要求,讓食品加工產品走進世界級的標準。

筆資訊
總筆數:76, 共9頁