精選案例

07
2024.12
【113年 應用案例】 測試座接觸元件 AI 智能瑕疵檢測

在 5G、AIOT、汽車電子等下游發展迅速,全產業鏈有望受益於此消費市場。在產品需求動能逐漸增加的情況之下,提高生產效率與降低作業成本成為最重要的課題。為符合客戶各封裝產品類型的需求,穎崴科技一直致力於研發高度客製化測試座,但衍伸的作業痛點則是無法大批量與機台全自動化的作業,部分作業仍需依賴人工執行。 在本案 2021 年時測試座探針部分是委外製造,對現行與未來的大量需求下工時、成本、供給、品質是穎崴需面臨的課題。nbsp因探針的體積較小且材質屬於金屬類型,在現行人力目檢下需花上較多的時間調整焦距、亮度等以確保能看得清晰並判斷,而判斷標準會因人而異,容易因主觀意識或人員目檢疲勞產生誤判、作業疏失,導致不良品未檢出、流入客戶端手中,使客戶使用本公司的測試座產生誤判結果,導致客戶產品功能失效等問題,進而影響本公司的商譽。 本公司在接觸元件檢測良率為 9995,看似高良率,但以一個品檢人員平均一天能檢測 1 萬根針,不良品就有 5 根針,在僅 3 公分長寬的測試座上約有 1 千根針,只要有一根不良針可能導致客戶端測試不良。因現有作業模式為人力目檢,當外在因子若為人員疲勞,人員作業疏失,人員非量化判定即有可能造成不良品流出,因此接觸元件的品質必須嚴格把關。 nbsp曾尋求以光學檢測Rule-based進行外觀品質控管,但接觸元件材質為金屬製,對光線會產生射散、背景雜訊干涉、背景刮痕、材質等因素可能造成誤判,因而找到在 AI 技術方面的資服業者來解決我們的檢測難處。 開發 AOI 專用線掃設備 nbsp為了達成本公司 IC 測試座內動輒數千上萬支探針檢測需求,若以傳統面型取像與逐針取像,勢必因取像速度慢無法達到快速檢測以及節約人力的目標。針對此點,資服業者提出可試用 AOI 專用線掃模組方案,以 X 軸 63mm 為面寬,往復掃描測試座上的所有探針,經測試可一次掃描 89 支探針如下圖,大幅提升未來 AOI 機台的檢測效率。nbsp本案將進行上述創新的概念驗證POC,重點於線掃描設備的開發,針對本公司所提供的正常與異常探針進行取像、學習、訓練,先以逐針取像,訓練初步 AI 模型為驗證目標,以達初步認可。 本案客製化開發的線掃描取像模組 未來理想取像結果示意圖 以單一 AI 技術方案解決量檢測需求 nbsp統一以 AI DL CNN 學習方式,取代現行 Rule based 需逐一定義瑕疵,為滿足磨耗的量測需求與缺損異物的外觀瑕疵檢測需求,如機台同時採用採量測檢測兩套技術,除了成本增加外,亦影響檢測速度,則資服業者建議以線掃描設備取像,其解析度足以由 AI 同時判定外觀瑕疵及以大小圓點判斷針頂磨耗狀況,詳如下圖。 以線掃描像素方式,呈現針頂磨耗情形 nbsp依此 AI 檢測技術能符合穎崴的量測與檢測兩項需求,不僅在未來探針檢測上帶來更多的效益,也在 AI 技術方面帶來創新主軸。 改變人檢方式,提升工作效率與產品品質 經以上述硬軟雙劍合璧後線掃描硬體AI 軟體模式訓練,成功挑戰了 AOI 新興檢測應用,經本案 AI 落地 POC 驗證後,包含客製化線掃描模組及初步 AI 模型開發、驗證,計畫明年正式開發 AOI 機台,並導入 IC 測試座生產線。 未來展望 IC 測試座上游探針業者及下游 IC 廠使用者對 AOI 檢測機台均有需求,上游可確保探針出廠品質,下游使用者則可利用本機台定期檢測手中諸多 IC 測試座使用狀況,對未來需求勢必殷切,故本計畫 AOI 機台對 IC 測試產業於可見的未來必將造成極為正面的影響。

2024-12-07
【113年 應用案例】 AI走入公益,食(實)物銀行也有時尚科技

社團法人台灣食物銀行聯合會以下簡稱本會以食物援助、貧困救濟、減少食物浪費、建構無飢網絡為組織宗旨,在台灣各地已有55個食物銀行據點,每日收集來自全台各地量販店、中盤商、零售商、製造商、甚至善心人士捐贈的愛心物資,也會搶救即將被丟棄的可食用物資,進行妥善調配並配送至需求的愛心戶手上,幫助在地弱勢邊緣戶。 但各據點皆需大量人力與志工以傳統聯繫方式處理食物銀行日常事務,聯絡非營利組織與捐贈機構,為據點收到物資捐贈後,再分配給有需要的家庭戶或個人。在物資管理上缺乏數位化與整合資訊,可能產生物資資源分配不均問題。 倉儲轉運中心與迷你食物銀行 分配弱勢物資 本次場域驗證單位社團法人高雄市慈善團體聯合總會食物銀行據點之一,以下簡稱高慈總 於109年6月24日正式啟用台灣首座「食物銀行-倉儲轉運中心」佔地200坪,提高食物物資再分配、運用之效益、妥善存放及食物物資管理,至今已搶救近二百噸蔬果續食,服務一百多個團體、逾5萬戶弱勢家庭受惠,持續服務19家迷你食物銀行,將於高雄多個行政區陸續落成,分配食物物資給超過10萬人次弱勢家庭。 高慈總「食物銀行-倉儲轉運中心」於高雄大社區 照片來源 社團法人高雄市慈善團體聯合總會 人力與食物物資管理的挑戰 面對大量經濟弱勢家庭的需求,「食物銀行-倉儲轉運中心」的管理顯得格外重要。進貨時需進行分類整理、汰廢、入帳等繁瑣的工作,出貨時則需參照社工員的食物物資需求做配置建議。這些工作都需要依靠人工判斷及經驗累積。而參與的志工多為高齡人士,體力有限,而倉儲工作需耗費大量體力,志工的招募困難重重。倘若有大批食物物資進庫,在調配上會耗費空間與人力整理、盤點,並同時擔憂食物物資是否能有效的被運用及周轉。也顯示出食物銀行服務逐漸擴大規模,但人力與物資管理系統無法隨之配合。 同時食物銀行物資來自各界之捐贈,故類別多樣且效期、規格、數量也均不相同。迷你食物銀行的志工夥伴,多數也為高齡人士,但卻需執行個案服務、食物物資管理配置、物資資源開發等多重職責,有時也需向物資領用者說明並接受即期、大量特殊性的物資,如成人接受嬰兒奶粉。 「食物銀行-倉儲轉運中心」物資盤點需要皆仰賴人力 迷你食物銀行志工具多重職責 照片來源社團法人台灣食物銀行聯合會 報廢物資減少60 物資轉遞速度增加80 為精進物資管理並達到物資有效利用,並解決人力短缺等問題,在本次場域實證案導入「食物銀行倉儲物資募集AI自動預警需求判讀系統」,第一部分為建構分類模型之前置作業,建置以及蒐集場域倉儲資訊,進行AI建模訓練,將過往場域倉儲資訊收集建置成資料庫,使AI可進行預處理、分類等工作。同時視其物資種類之相依狀況作為特徵值,導入演算法中進行運算建模,再依收集之資料進行重新訓練,最終進行場域驗證並針對經常性五大類物資進行數據整理,以建立數據資料所需之訓練及測試資料集,第二部分以演算法之RNN技術建構分類模型;進一步利用強化學習建構食物銀行倉儲管理機制,使分類完善之受贈物資如白米、沖泡飲品、麵條、泡麵、罐頭等可以根據儲位指派原則自動指派儲位。 AI服務系統服務流程與說明 資料來源社團法人台灣食物銀行聯合會 在AI預判下,可優化物資轉遞速度及物資調配,有效精準配對物資捐贈並降低捐贈歷程的損耗,增加物資分配正確性,提高媒合服務率即捐贈成功率,降低錯誤物資造成人力物力浪費,即時監控食物物資的庫存,確保操作者能夠迅速回應需求,有效提供物資援助。 以AI系統的導入,加上數據智慧化建置,協助倉儲轉運中心的運作,可爭取更多時間分配捐贈物資使用。導入加速社福團體數位化服務推展,完善照顧整體社會弱勢群組之需求。 使用系統進行物資分配調度 照片來源 社團法人高雄市慈善團體聯合總會 透過本次的場域驗證後,未來可推廣至食物銀行其他服務據點導入AI系統,也可與更多非營利組織、公益團體、慈善團體等夥伴合作,擴大「食物銀行倉儲物資募集AI自動預警需求判讀系統」應用範圍如醫療用品配送,幫助更多組織更智慧化地管理和分發,減少物資的浪費,以提高社會福祉。

2024-12-07
【113年 應用案例】 CCTV 智能影像搜索系統

查找某特定人物,尋找攜行李箱入廠人物進入高安區。人物及物件顏色特徵確定,人物藍黑色上衣,行李箱顏色黑色,透過CCTV 智能影像搜索系統,做物件與顏色檢索條件設定,可以成功搜尋到三段縮圖有出現關鍵標的影片,可以有效解決作業人員查找物件標的物,透過此系統查詢速度可比人工快6倍。 需求痛點 日月光高雄廠區內密布CCTV能及時監控廠區中的各個角落,但若在事件事故發生時,無法在有限的時間可透過CCTV影像回放被找到,其背後之意涵與其中蘊藏之巨大風險自是不言而喻,而許多平時無人的區域也很容易成為治安上的死角。故如何更智能、更有效的監控占地龐大的廠區是全體半導體企業打造智慧廠區之一大重點。日月光高雄廠占地遼闊,其中有許多重要的場域需要監控人員進出以確保企業機密與員工安全。 1 自動化生產線與自動倉儲:半導體企業之自動化生產線與自動倉儲中常有AGV(Automated Guided Vehicle)無人車高速行駛,若有廠區人員不慎誤入AGV移動區域且無法對該人員發出警告,則當憾事發生將追悔莫及。 2 材料與產品存放區域:半導體相關製程之材料價值不菲,若存放材料或產品之區域遭人入侵則有損失高價材料、產品之風險。 3 高機密管制區:營業秘密關乎半導體相關企業之核心技術競爭力,若有人員侵入高機密管制區則有企業營業秘密外洩之風險,而營業秘密安全防護一直以來都是半導體相關企業最最重視之議題。 4 卸貨碼頭區:日月光L但碼頭區常有卸貨車輛進出,若人員闖入碼頭區則有發生人車擦撞、碰撞意外之風險。甚至堆放在碼頭區待出貨的貨物有失竊以及因人員碰撞後,貨物倒塌造成損毀,因而造成公司具大的信譽、金錢損失。更進一步的造成生產出貨的不便。 異常事件發生時,如何在海量數據中,快速搜尋符合條件的關鍵影像 日月光高雄廠有許多重要的場域都需要架設CCTV為安全把關,但CCTV的數量動輒上千支、上萬支,一旦發生事件要去搜索影像時,都要用人眼一一回放查找、搜索,耗時耗力效益不彰。有鑑於現今電腦視覺的發展,遂利用AI來替代人眼回放查找。 問題情境 物件偵測 物件偵測資料來源分成兩個部份 開源資料集OIDv4、以及日月光高雄廠CCTV影像檔案。針對OIDv4中,取出符合定義的九大類別物件訓練資料,其中有二類物件未能於OIDv4中搜索到可用資料,分別為刀子與汽油桶,其餘七種類別物件皆可從OIDv4中取出可用訓練資料,此訓練資料皆已有標記。而針對高雄廠CCTV影像檔案,從中抽取部分幀(Frame)的影像,並且對欲偵測的物件進行人工標記以做為訓練與測試資料。 九大物件 顏色辨識 顏色辨識資料來源分成兩個部份網路圖像截圖、以及高雄廠CCTV影像檔案。目前並沒有找到針對顏色辨識應用的公開可下載的開源資料集,因此只能從網路蒐集圖像,於網路上搜索符合定義的九大類別物件的圖像,儲存圖像後將物件與背景分割,只保留物件的區塊,最後將圖像依照顏色做類別標記。另外針對高雄廠CCTV影像檔案,則使用物件偵測資料已標記好的bounding box擷取CCTV影像檔案中各個Frame的物件所在區塊之圖像,最後將肉眼可辨其顏色之圖像依照顏色做類別標記。針對每種物件類別皆有其專屬顏色定義,各種物件類別的顏色定義取決於此物件類別於現實生活中常見之顏色。 動態忽略免除混淆訓練 從OIDv4訓練專案的物件偵測雛型模型時,因為此資料集的每張影像中,皆只有針對單一類別做標記,但影像中有可能包含其他欲偵測之類別未被標記,故針對此種情況,訓練時會使用動態忽略之技術使其不會有混淆訓練的情況。接著使用高雄廠取出的訓練資料用來Fine-Tune雛型模型提高物件於特定指定場域下的辨識率。最終選取訓練過程中於測試集計算之損失值最低的模型做為主要物件偵測模型。 動態忽略 AI幫你看 CCTV 智能影像搜索系統主要是做為監控影像的搜尋輔助系統,可以藉由設定搜尋物件條件來加速達到從影片找出目標事件的功能,僅需定義搜尋條件,即可快速產出關鍵物件的縮圖影片並進行回放確認,縮短昔日以人工調閱案件所須時間,查找時間快6倍,前端安全單位運用此平台可強化風險管理第一道防線之自行監督功能以及早採取因應措施。

2024-12-07
【113年 應用案例】 基於人工智慧的PCBA表面瑕疵檢測改善

隨著AOIAI系統的導入,我們將能提高產品良率、降低成本,從業務面來看,更可提高客戶的信任度,增加營業收益。而且AI具有難以被模仿的優勢,並非如其它設備只要花錢就買的到,讓我們的競爭對手難以追上我們。 組弘發展現況 我們致力於IOT智慧製造上,自行開發的系統已有智慧物料系統、環境溫溼度監控系統、防錯料系統、智能採購算料系統、智慧物料盤點系統、錫膏管理系統、生管系統。過去我們曾詢問過其他廠商,有關AI檢驗PCBA表面瑕疵的可能性,每個廠商都希望我們能夠購買其設備,但實際驗證後都無法達到效果,此次與資服業者討論過後,定調為AOIAI的運作模式,方覺得有可行性。 組弘科技投入AOIAI檢測計畫,用於檢查SMT零件上的文字、焊點、極性、缺件hellip等,用AI替代人工來學習AOI檢測後定義為rdquo可能是不良品rdquo的部份,提升人員產值與降低誤判率。 產業痛點 nbspnbspnbsp 台灣缺工情形嚴重,尤其願意從事目視檢查的人更少,而且年齡相對較大,檢查遺漏的狀況越來越嚴重。所以在追求高品質電子產業中,最關鍵的瓶頸已經是生產後的檢查。過去的消費性產品,異常未能被檢出,只要在一定比例下,也可被接受。現在的汽車產業如果有不良未被檢出,即有可能造成人員死亡,所以汽車產業對於品質的要求極高。要想在汽車產業的供應鏈中生存,就必須解決異常無法被檢出的問題。 nbspnbspnbsp 而且隨著台灣工資越來越高,只能設法以AI技術,取代傳統人力,否則就算解決了異常流出,但相對高的人力成本依然無法在此產業中競爭。 應用技術與說明 nbspnbspnbsp 原本過程圖一,PCB從出來Reflow後,會經過AOI檢測,分出「疑似不良品」與良品,這時「疑似不良品」的部分約為20,再由人工針對這20的部分來做複判,再將「疑似不良品」的部分區分為良品與不良品。 nbspnbspnbsp 我們想要藉由AI的技術,將原本由人工複判這20的「疑似不良品」改由AI來做,複判出來一樣會有良品與「疑似不良品」,結果一樣會有「良品」與「疑似不良品」的產生,但此時「疑似不良品」約只剩下3,也就是說組弘作業人員的工作量會從20降到只有3。理論上是AOI檢查完後,再由AI來做複判,但從表面看起來似乎只有經過AOI而已,所以我們才將這個技術稱之為A0IAI檢測圖二。 原本AOI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI 檢測不良品資訊,再經由人工逐一覆判是否為不良品。 AOIAI檢測過程 操作員將待測PCB板放入AOI檢測設備,輸出AOI檢測不良品資訊後, 進由AI先進行AOI檢測不良品的覆判,輸出AI檢測不良資訊後, 再經由人工逐一覆判是否為不良品。 流程差異 nbspnbspnbsp 藉由AOIAI系統的導入,我們除了能夠提升目視檢查人員的效率與良率外,我們有了這次AI的導入經驗,以後也可將AI與大數據的運用加入到組弘原有的智慧製造系統,使我們的智慧製造系統的效能更提升,更進一步的減輕員工的工作壓力。 導入前後差異說明 推廣策略 1nbspnbspnbspnbspnbspnbsp 同領域擴散:所有SMT製造業皆會遇到檢查瓶頸導致延誤出貨的狀況,導入此系統可解決目前缺工嚴重問題並提升出貨速度與品質,自行向客戶推廣或透過設備商銷售給相關需求者。 2nbspnbspnbspnbspnbspnbsp 異業擴散規劃:與AOI製造商洽談直接將AI系統掛在AOI系統內,增加其市場競爭力。 nbsp 獲利策略 1nbspnbspnbspnbspnbspnbsp 與AOI製造商合作收取授權金。 2nbspnbspnbspnbspnbspnbsp 與SMT製造業直接銷售AI系統。 3nbspnbspnbspnbspnbspnbsp 提供SMT製造業AOIAI系統訂閱制

2024-12-07

應用案例總覽

【導入案例】「中小企業AI職能評鑑系統」,大幅降低企業職能導入成本
【109年 應用案例】 中小企業AI職能評鑑系統,大幅降低企業職能導入成本!

IBM的超級電腦 Watson,能夠預測員工何時打算離職,且準確度高達 95,也為 IBM 每年節省了高達 3 億美元用於留住員工。另外透過雲端運算服務和現代化,IBM精簡了30的人事成本,讓留下來的員工獲得更高的薪水,做著價值更高的工作。 而在台灣,要如何讓「讓留下來的員工獲得更高的薪水,做著價值更高的工作」呢重點就在於每一個職位的「職能設定」,根據勞動部勞動力發展署所建立的「iCAP職能發展應用平台」所示,每一個職位都有其應具備的主要職責、工作任務、行為指標、工作產出、知識、技能及態度,唯有確立每一個職位的「職能」,企業才能夠根據職能有效應用在員工招募、教育訓練及績效管理上,否則不知道員工應該做什麼宛如瞎子摸象,將讓企業運作潛藏風險。 職能基準範例圖 目前在「iCAP職能發展應用平台」中,建立的職能基準共有872種,其中由各部會完成的有553項,當中包括勞動部的253項及教育部的66項,如果企業想要建立屬於自己的「職能基準」,都需要到「iCAP職能發展應用平台」上來搜尋參考資料。假設企業想要招募有關「業務」的人員,但不知道「業務人員」應該做什麼事情,可以先到「iCAP職能發展應用平台」搜尋「業務人員」,如下圖所示。 於「iCAP職能發展應用平台」搜尋「業務」 可以看到共有18類業務人員,這時候企業就要根據本身需求,逐一點進去查詢、閱讀並整理成自己想要的「職能基準」;但如果我們改搜尋應該是每一間企業都會有的「總務」,其呈現結果如下圖所示,竟為0項。 於「iCAP職能發展應用平台」搜尋「總務」 由上可知,雖由勞動部勞動力發展署所建立的「iCAP職能發展應用平台」可解決部分職務的「職能基準」,但企業內部的分工方式各有不同,可能這個職務在「iCAP職能發展應用平台」上是搜尋不到的;其次,在中小企業中,幾乎存在的都是「多能工」,也就是許多職務的職責是在同一個員工身上,如:在30人以下的小型企業中,通常會計、總務、人事都是同一個人,這時如果要針對這個人建立職能基準,就要分開搜尋「會計」、「總務」及「人事」,然後再將這三種職務的職能基準予以整合,如此往往曠日廢時且成效不彰。 此「中小企業AI職能評鑑系統」希望讓「人能盡其才」,藉由導入AI更精準建立員工的職能基礎標準,並可隨時追蹤其職能表現。 職能模型皆由人工產生及修正曠日費時 國內某螺絲、螺帽、扣件等產品出口商所有的職能模型皆由人工產生及修正,在執行過程中曠日廢時,難以滿足企業因人員變動所需,如:先前喬邁企業有專職的「生管人員」,但在該人員離職後,此項工作需要由其他員工執行,因此其他員工的職能模型需要立即調整;又或者企業為了因應未來發展,須成立開發部門,但先前完全沒有人有相關經驗,不但不知道如何從內部選材,亦不了解在徵才網站上,要如何說明才能找自己真正想要尋找的人才。 除此之外,該公司執行長一直以來深為公司內部的績效管理而苦惱,由於欠缺可精準衡量員工表現的標準及制度,導致每一次的績效考核結果都無法正確反映員工的真實表現,形成考核盲點,也無法把真正需要被獎勵的員工找出來,因此,期望透過AI職能評鑑系統,馬上釐清開發部門所須具備之職能,以及如何進行招募跟績效考核,如此方能有效改善企業內部權責不清、考核不精準之痛,因此其助益實為顯著 AI職能系統建立 X 深度學習 而此為期四個月的人資領域職能系統計畫,執行方向明確,但因導入解釋現象之模型如:Seq2Seq、Deep Keyphrase Generation、Tf-IDF關鍵字擷取演算法與PangRank的導入都是人資領域的新嘗試,過程中採用開源大數據架構進行自然語言處理,以完成 Word2Vector及index 並inverted index其目的爲關鍵字weight權重與關聯性建立。又因無法像影像資料以連續數字處理,必須由相關連的關鍵字如:技能、知識、職業別等進行特徵值簡化,大略說明基本步驟如下: 1 建立Propagation 模型乃是採用Google 採用已久 LTR 混合 Pointwise 推薦引擎(2個月) 2 建立Back Propagation 模型(2個月),調校 loss function之超參數 3 調校 CF model之超參數 4 建立人機協同機制取得更多資料餵養Model 5 反覆以上步驟 而在開發職能模型的過程中,聯和趨動股份有限公司與微光國際資訊有限公司多次討論,認為職能間互有關連,在建立完成知識圖譜後,進一步將職能量表上傳至Neo4j圖形資料庫,在處理複雜的關係資料結構具有極好的效能。而目前已完成500件職能量表上傳至之Neo4j關係分析平台。 使用python進行wor2vector的自然語言分析 除了將一個職位用word2vector之後的tensor描述,找出此職位的知識圖譜樣貌,根據此知識圖譜,可以了解在不同職位之間的相關性,以及彼此之間維度的相似度表現。最後,就是用此知識圖譜來建立該公司的「職能模型」,並依照此職能模型進行深度學習的訓練。 AI職能評鑑系統介面 未來,除了為公司建立自己的職能模型,也可開放給終端使用者,個人可藉由分析自己的職能表現,來了解自己轉職的可能性、市場的價值,也能知道應該補強的技能。公司若對應此知識圖譜,將來可開發跨產業產品。 1 短期:依照政府公布職能量表iCAP, iPAS,以自然語言與關鍵字模型拆解,配合非監督式學習建立「原生職能基礎單元模型」。 2 中期:為企業量身訂做專屬的職能模型。依照既有「原生職能基礎單元模型」由專家以監督式學習,訓練個別企業之「分散式衍生職能模型」。 3 長期:建立「強化學習」模型,導入員工職涯認知與規劃。 職能模型建議,媲美專業人力資源顧問 透過職能知識圖譜的非監督式動態學習,快速建立個別企業的職能模型,企業內部的人力資源人員或外部的專業人資顧問,便可以依據所產生之職能模型,進行人才招募、職能盤點、績效管理及教育訓練等面向的評估跟應用,並會依據公司現有職稱架構下,自動建議其需加強的職能,包括相關的知識、技能及態度等。透過持續性資料的導入跟訓練,系統會學習雇主對於該職業應有之模型的實際看法,並回饋至雲端職能量表中,以遷移學習完成知識圖譜的動態學習,未來其將可媲美專業人資顧問,藉此快速幫助許多跨領域或具多元化技術的企業進行員工職能培訓。

【導入案例】AI智能配音模組,讓機器配音有溫度
【109年 應用案例】 AI智能配音模組,讓機器配音有溫度

因應時代趨勢,數位學習與移動教材受到廣泛重視 隨著科技迅速演進,如何有效率地培育出能「因應發展變動」的專業人才,是許多企業不斷思考的重要課題。近年來許多企業為刺激外部的成長動能以及內部組織的驅動力,逐步將「數位學習」應用在員工培訓之中,以提升教育訓練效果,「數位學習」與「移動教材」因而受到廣泛重視。 委外配音成本高,且無法負荷大量需求 導入AI配音系統之數位教材製作流程前後差異 台灣戰略突破股份有限公司曾協助企業,將歷年公部門辦理的諸多研討會、實體課程及教育訓練活動,轉製作為數位教材;然而,在轉製作的過程中,除了需邀請老師、尋找並租借拍攝場地、錄音及影片後製外,在錄製過程中,可能因講師緊張、不習慣鏡頭、吃螺絲等因素,造成錄音品質不佳或不斷NG重錄的情況。 雖然有提供客戶教材配音的選擇,但委外配音成本高,且無法負荷大量需求。因此,希望導入AI語音合成技術,研發「智能配音模組」,即時將簡報上的文字,轉換為自然流暢、近似真人發音之語音檔,以節省人員配音的成本。 擬真人之智能配音模組,提供更多元之配音選擇 AI配音模組示意圖 台灣戰略公司與AI技術團隊魔方數位有限公司合作,採用Tacotron2結合WaveNet及Tacotron的特性,將字元嵌入到梅爾刻度Mel-scale譜系圖中,然後由修正過的WaveNet模型作為vocoder,從這些聲譜圖中合成時域的波形,最終開發出MOS語音質量評測指標之評測分數近似真人之智能配音模組。 此AI智能配音模組經過測試者測試,以MOS語音質量評測指標為標準,得到評測分數為43,已達到計畫初始設定的目標值421,且高於Wavenet 408之評測分數,顯見成效卓越 AI智能配音模組,成本降、利潤升,將有效提升台灣數位學習產業環境 AI配音系統導入後之成本大幅降低,利潤相對提升 此AI智能配音模組,不僅可減少製作數位教材的成本,亦可解決我國產、官、學界在數位教材普及的困難,且能有效提升客戶製作數位教材之效率、大量減少人力缺口及成本結構風險,並提升獲利狀況。 台灣戰略公司後續也將持續研發「智能聽打模組」,並將導入自動化流程機器人RPA,將數位教材製作過程中的上字幕、配音、轉檔等工作項目以自動化取代現有人工作業,協助國內數位學習產業轉型提升。

【導入案例】自動篩果系統:利用類神經網路、AI、自動化提高篩果效率,提昇10倍效率、增加 17 億產值、93準確率大幅增加品質的解決方案
【109年 應用案例】 自動篩果系統:利用類神經網路、AI、自動化提高篩果效率,提昇 10 倍效率、增加 17 億產值、93%準確率大幅增加品質的解決方案

臺灣地處亞熱帶,又有多樣化的地理環境,相當適合種植水果;舉凡香蕉、鳳梨都曾是紅極一時,讓我們引以為傲的熱門出口商品。然而,因為消費國農民逐漸掌握到了臺灣水果優良的種子,可以自行種出同等品質但是更加平價的相同水果,致使我們的水果出口面臨重大危機目前,臺灣的水果如芒果、芭樂雖然仍有一定競爭優勢,但若是未能比其他國家更進一步,假以時日仍然會落入同樣的問題當中,不容我們輕忽水果品質與品牌價值是臺灣水果產業於國際間保持競爭力的不二法門。 篩果工作是水果產銷當中決定品質的主要環節,目前業界卻囿於高度倚賴逐漸老化的農村人力,致使缺工下篩果成本上揚,良率也極難一以貫之保持穩定;因此,篩果工作的自動化,就成為相當重要且急迫的課題。國立清華大學電機工程學系李祈均教授帶領團隊透過攝影機、輸送帶、以及 AI 結合出的自動篩果系統,目前具有高達 93 的準確度。一個產季就能為芒果單一商品提昇 17 億的產值。隨著 AI 系統的逐步發展,未來準確度可望提昇外,也可以將同樣的系統應用在其他水果之上,進一步推動水果全程產銷履歷,帶動臺灣水果產業科技化升級。 篩果工作非常仰賴稀缺的人力,農村人口老化更是雪上加霜 李祈均教授(後稱李教授)在一次聊天中,從曾一起在美國讀書的同學余(化名)處認識到水果產業面臨的困境。余是一家臺灣數一數二的大型水果國際進出口廠商的年輕第二代。根據余投身產業多年的觀察,臺灣水果初期生產出口往往可以得到相當不錯的利潤,但消費國的果農往往在取得種子之後,就會嘗試摸索在地育種,以降低成本獲取更大利潤。臺灣水果若是在品質或品牌價值上無法超出消費國果農的產品,就會因為競爭者的成本確實較低,而被淘汰。 篩果是將水果按照品質分級,如果連最低規格皆無法通過,則會打消為廢品。實務上,篩果這個工作會由農民集貨場以及經銷商的包裝場分別執行,但如果集貨場處理得不好,而包裝場又在前期抽樣沒做好,就會造成經銷商的損失,最多甚至白白打消 30 的 A A 等級的水果。 這個工作極度仰賴有經驗的篩果人員,比較有經驗的篩果人員,不只可以控制好品質,降低篩果過程中傷損水果的機率,甚至有能力額外揀出約莫 10 的 A 等級水果,大大增加許多價值。令產業憂心的是,有經驗的篩果人員因為農村高齡化而逐漸凋零,成為非常稀有的資源。這樣稀有的人力資源每每在農忙時期炙手可熱,大家爭相搶奪,搶不到的農家或是經銷商,只能遷就於比較次級的人力,蒙受承擔額外損失的風險,付出更大的成本;最不幸的狀況,便是遭受前述 30 的打消損失。 篩果是水果生產後期包裝銷售時的重要流程,若是品質控管沒做好,將會造成巨大損失。 AI非常適合協助篩果工作,只不過數據集的取得困難 李教授在了解余的困難之後,發現這是一個可以利用 AI 來解決的問題mdash篩果雖然高度仰賴具有經驗的篩果人員,卻是一個重複性很高的工作;而處理重複、資料量大的工作一直都是 AI 的強項。 不過,在研發工作還沒有開始,就面臨第一個令人頭痛的問題:要從哪一種水果開始 首先,合適的水果需要有一定的出口量,而且必須是仍具有相當成長空間的果物;如果是部分較缺乏國際競爭力者如香蕉、鳳梨等,廠商已經沒有餘力投下更多資金購買設備,更遑論在研發時期贊助經費或是協助研發團隊實驗了。 既然有了想法,當然就要加緊腳步盡快開始實行於是,目前仍保有一定規模優勢的愛文芒果,雀屏中選成為自動篩果系統的第一個實驗對象。 芒果採收後的第一關,就是在集貨場進行第一次的篩果,待篩果完成之後,即送至包裝場進行熏蒸消毒、準備銷售或是裝櫃外銷。然而,對於目標市場有較深入了解的外銷廠商,對於品質會更加嚴格要求,往往在包裝場熏蒸之前,還會再行篩果一次以把握水果品質。由於集貨場的員工是以篩檢的芒果數量而非芒果品質計算工資,以量取勝往往是他們工作的傾向;如此一來,後一手包裝廠為了選果品質,便不得不重工篩果而徒增勞務。解決方案看來簡單明瞭mdash只需要透過攝影機、分級分流的機器輸送帶,以及搭配上可以從外觀分辨芒果品質的 AI 就能夠自動篩果。但是,難點就在於 AI 要如何分辨芒果的好壞呢對,就是必須從建立一套訓練數據集開始為了建立數據集,李教授團隊建立網站,讓所有人都可以上傳芒果照片並且為它們分級;在完善數據集後,就能利用它們來訓練 AI。 李教授團隊研發出的篩果機透過AI圖像辨識篩選品相上佳的芒果。 經過訓練的 AI 準確度高達 93,一個產季就可以提高 17 億產值 108 年,透過工業局(現經濟部產業發展署)與 AI HUB 的協助,成功加速技術進場實證。 李教授團隊在 2 個月實證期間累積 10 萬筆數據,經過訓練的 AI 準確度高達 93 比起正確率 70 的人工作業高出許多,在品質上有了很明顯的差異。以出口價值計算,一個芒果產季預估可望提高 17 億的產值更可以節省人力成本達 1866 萬,並免於前文所提的季節缺工問題。 除此之外,因為不再需要集貨場和包裝場各篩果一次,也減少篩果過程當中人為疏失所造成的損耗。待技術更臻成熟後,未來也能將同樣的系統應用在其他的臺灣出口水果如蓮霧、芭樂上,讓臺灣的水果產業更上一層樓。 既然是 AI,就能經由不斷訓練來提高準確度,透過演算法的持續調整,以及與設備廠商的合作,可以大幅提昇產能。另外,李教授也在廠商及政府的贊助之下舉辦 AI Cup 競賽,讓更多團隊使用同樣的數據集來繼以推動演算法的發展,期待能帶動更多有興趣投入的業者進一步合作。 AI HUB 上的愛文芒果等級辨識系統 李教授團隊期許透過 AI 的力量,能夠建立水果從生產到包裝運輸的完整履歷,藉以提昇臺灣水果的品牌價值除了期望讓臺灣水果在國外競爭激烈的市場搶占一席之地,也能隨著質量兼備的供貨,讓臺灣水果在國際上大放異彩,成為臺灣之光。 臺灣水果在國際市場上仍有一定競爭優勢,但隨著外銷出口,也面臨消費國果農的競爭壓力。 每年芒果季輕鬆省下 1866 萬,而且大幅提高品質。 nbsp

【導入案例】「展覽自動配對系統」對準目標客群行銷效益高
【109年 應用案例】 「展覽自動配對系統」對準目標客群行銷效益高!

活動百百種,你愛參加哪一種 國內每天皆有各式活動,包括論壇、展覽、講座、免費體驗等,活動主辦方需利用自有媒體(活動官方網站、FB、IG)、活動網站及付費進行媒體行銷,但往往不知道目標客群在哪裡,而無法準確預估參加人數。 透過此「展覽活動自動配對系統」,利用民眾曾經參與各項活動的紀錄,經由數據分析預測使用者喜好哪種類型的活動,並自動配對給使用者,提供快速、輕鬆又精準的行銷推廣方式。 活動主題種類多,行銷廣告費用高且成效不彰 國內某策展公司與鄉鎮公所及觀光服務業者合作,致力農村行銷,每年主承辦農產品策展、農村體驗、親子主題體驗日、農特產品行銷等活動,在舉辦活動時,因參與民眾特性太過廣泛,且活動主題不盡相同,在活動推廣時無法有效精準行銷,容易造成行銷費用大增且媒合度低。 目前策展方在舉辦主題展覽會,以場內200個攤位為例,整體行銷費約80萬至120萬,其中官網建置、活動網站廣告行銷、簡訊通知等,約占40萬至60萬,但活動媒合成功率卻不到2成,無法針對目標客群精準行銷。 改採本「展覽活動自動配對系統」後,可以自動選擇合適客群進行活動推播,根據場次規模及展期,系統租用費約僅20至30萬,即可大幅降低活動宣傳費用 精準智慧行銷,鎖定目標族群發放優惠券 「展覽活動自動配對系統」目前準確率82,可有效篩選目標消費者,未來在模組準確率方面,會再蒐集大量資料與去除雜訊資料來提升準確率,並瞄準目標族群發放優惠券,使收到優惠券的族群能實際參加活動。 系統透過AI加值後,可取代人工無目標的隨機發放優惠券,透過AI模組自動調整權重,可更精準鎖定目標族群。目前加權公式利用策展公司CRM系統查詢過往會員行為分析產出,第二階段將會進行AI加權公式,透過自動修正方式,將不同活動類別找尋最佳計算公式。 展覽活動自動配對系統服務架構 在執行期間遭遇「AI分類器模組訓練學習沒找到最佳解」的問題,令豐醇科技有限公司感到困擾,經與AI工程師互相討論,發現「倒傳遞類神經網路」的缺點是在學習時僅會落在「局部」的最佳解,而非「總體」的最好結果,此部分可再經由加強訓練次數與調整參數的方式,達到加強準確率的目標。 擴大系統功能,串聯會員資料庫,進行行為分析 此「展覽活動配對系統」主要提供活動主辦單位、獨立策展人及民眾進行活動媒合,接下來將會擴大平台功能以符合活動方使用,並加強AI分類器準確率,未來將會結合海洋產業進行海洋文化策展,利用本系統找尋海洋文化宣傳員,透過串連擴大會員資料庫,進行行為分析。

【導入案例】「AI麵包辨識系統」,機器一掃,價格瞬間幫你算好
【109年 應用案例】 「AI麵包辨識系統」,機器一掃,價格瞬間幫你算好!

轉化AI人臉辨識技術的奇思妙想 隨著人工智慧發展,越來越多行業開始擁抱AI技術,甚至悄悄走入人們生活之中。由於烘焙店多數販售的是新鮮現做的麵包與西點,而現烤麵包通常不會有條碼,必須依賴結帳人員肉眼辨識,並逐一輸入麵包種類與價格,於是從AI人臉辨識技術得到靈感,想像若是能把這樣的人工智慧技術轉換對上百款的麵包作辨識,或許能提升門市結帳效率helliphellip。 手作麵包多樣化,樂了顧客,苦了店員 國內某烘焙屋的麵包品項多達100種以上,且會定期更換或新增商品,讓顧客有多樣化的選擇;但這也讓結帳人員視為一種挑戰。 店家訓練一位結帳人員所需時間為2個月,但正式上線服務後,每個月還是會發生5至10不等因麵包辨識錯誤而結錯帳的問題,且結帳高峰期通常是下班時期,所以時常造成結帳塞車,結帳人員又會因為緊張而更容易算錯金額。而結帳人員訓練困難且結帳流程不精準的問題,讓業者困擾已久helliphellip。 當烘焙遇見人工智慧,迸出智慧零售妙體驗 在一般的麵包店都是新鮮出爐後先「裸裝販售」,待麵包溫度降為常溫狀態後再進行「包裝販售」,這兩種結帳方式都需結帳人員辨識及記憶價錢才能進行,且櫃台人員需要2個月的教育訓練才能上線結帳,上線後每月還是會有5至10的錯誤機率。而邁迪烘焙屋麵包品項多達100種以上,對結帳人員著實是一大挑戰 因雲逵科技有限公司擅長開發iPad POS,且設計的理念就是簡單、方便、好用,讓店家能輕鬆、快速且正確的結帳,所以結合現有的POS系統,再加上AI影像辨識的功能,讓店家能更有效率且精準地完成每一筆交易。 AI麵包辨識模型運作示意圖 圖片來源-雲逵科技提供 而執行方式可以簡化為八個步驟,包含: 1收集數據:至烘焙業者拍攝麵包影像數據。 2影像標註:影像數據交予木刻思股份有限公司進行人工標註。 3AI建模及訓練:由木刻思負責AI建模及訓練的調整。 4iPad POS調整:在建模的同時,POS端將進行前端UI介面的調整,以及後台端與AI model的串接。 5開始測試:當木刻思以現有數據,達到辨識率95以上,即正式開始串接測試。 6實際場景測試:實際移至麵包店拍攝採集數據,實際驗證其影像辨識正確率。 7規劃實際場景應用附件:當辨識正確率達98以上,將設計應用於現場結帳之附件,如:遠端拍攝鏡頭及投射光源。 8正式應用:結合電子發票正式上線。 POS機AI麵包辨識結帳流程:開始辨識-辨識完成-結帳-確定結帳,只需3秒 圖片來源-雲逵科技提供 AI麵包辨識系統,一兼三顧好輕鬆 加值AI能量後,不但可節省烘焙坊結帳人員事前訓練時間及成本,並減少人員辨識錯誤的成本,亦可加速結帳流程與效率,增加客戶滿意度,後續可推廣至各大零售業,擴增智慧零售的新版圖。 AI加值前後的麵包結帳流程比較圖 圖片來源-雲逵科技提供

【導入案例】「AI智能廁所品質監控平台」,降低客戶對廁所髒亂申訴次數及提升人員調度有效性
【109年 應用案例】 「AI智能廁所品質監控平台」,降低客戶對廁所髒亂申訴次數及提升人員調度有效性

AIIoT的落地應用的最佳實踐 隨著我國今年邁入5G商轉元年,透過物聯網結合人工智慧以零延遲傳遞數據,將使所有人有效掌握所有數據,而廁所的「異味監測」就成為最好的平台。國內某連鎖超市全台共有47家門市,近年來超市產業競爭激烈,部分門市為了使服務內容更加多元,規劃座位區及廁所供顧客使用。 目前連鎖超市某門市的客戶對於廁所整潔的反應次數,平均一個月約為10次,顯然高於各店,因此期望透過人工智慧,解決客訴率過高問題。 顧客常常反應廁所髒亂 連鎖超市某門市廁所固定於每日12時及18時進行巡檢,並於大夜班時進行清掃,客服人員時常收到顧客反應廁所環境髒亂及異味令人不適,導致須隨時調派人力進行廁所環境維護工作,若要達到廁所百分之百無異味,需聘僱專員於廁所內,隨時隨地進行清潔,然而這麼做此成本過高,且會浪費人力。 透過國興資訊股份有限公司與連鎖超市攜手合作,委請國立台中科技大學AI團隊,透過物聯網與AI技術解決這個令人頭痛的問題。 物聯網監測 X AI人力派遣 國興資訊將物聯網感測裝置於廁所間之外門鎖,並於所間外「安裝異味感測裝置」與「空氣溫室度感測器」,以使用者開關門的行為、次數與時間,預測所間清潔的程度,如有人打開廁門且迅速關上,若連續有三人以上皆是相同行為,則可預測所間的髒亂程度到達必須清掃的程度。 在人力派遣部分則根據使用人次、假日、節慶活動進行預測,並動態調整人力備援,並計算能提供廁所舒適度的最低人力派遣。 智能廁所品質監控平台之服務架構 此「智能廁所品質監控平台」係於營業場所之開放式廁所建置Sensor,蒐集使用人次、使用時間、異味濃度偵測與空氣溫、溼度等數據,回傳至平台進行AI數據分析供管理單位使用,了解廁所即時使用時間、人次與環境髒亂程度,提供警示提醒派遣人力清潔、檢視廁所情況與做出因應措施,並能協助管理人員進行環境品質監控與髒污預警派工,透由歷史數據分析各時段使用人次進行廁所動態人力預測性的調配建議,有效規劃人力資源管理與運用。 智慧廁所偵測,降低清潔人力成本 加值AI智能廁所監測平台,經過實地場域測試後,店家對於即時監控與警示功能感到相當實用與且願意持續使用,對於「降低客訴次數」,以一個月的資料驗證,確實有顯著的效果,而對於「動態人力派遣」,則尚在評估與驗證中。 經過一個月的數據資料評估,發現在「掌握廁所使用情況」與「降低客訴」有顯著的成效,經過與店家場域試用後,也願意持續使用,之後將透過「使用時間」進行通知,避免顧客於所間內發生意外。未來亦將再在訂價上採低階、中階與高階價位的佈署與推廣。

【導入案例】AI抗疫 武漢肺炎檢疫 效率提高6倍
【109年 應用案例】 AI抗疫 武漢肺炎檢疫 效率提高6倍

抗疫如救火,隨著返國人潮增加,武漢病毒檢疫的壓力越來越大,所耗費的時間也越多,若能將檢疫時間縮短,對於防疫效果將有正面助益。位於南臺灣的成大醫院,其所建置的「智慧醫療臨床決策輔助系統」,原本高風險病人從踏入檢疫站到醫師做出臨床決策的時間從原本需2個半小時,現在不到30分鐘即可完成,將檢疫效率一舉提高5至6倍,還可有效降低醫護人員和病人交叉感染的風險以及檢疫所需人力。 隨著一波波海外留學生密集回台,不僅中央疫情指揮中心緊繃神經,各醫療院所也上緊發條,緊盯每一位接受檢疫的國人,另方面,又要擔心同仁可能遭受到的感染風險,心力交瘁。此時,若能運用AI技術,提升檢疫效率,對於醫療單位及國人健康,實為一大福音。 AI輔助醫學相加相乘 成了抗疫功臣 為了對抗新型冠狀病毒肺炎嚴峻的疫情,成大醫院整合多項智慧醫療,建置「智慧醫療臨床決策輔助系統」,將檢疫效率一舉提高5至6倍。原本高風險病人從踏入檢疫站到醫師做出臨床決策的時間從原本需2個半小時,現在不到30分鐘即可完成,有效降低醫護人員和病人交叉感染的風險。 成大醫院所建置的「智慧醫療臨床決策輔助系統」分為三部分,包括前端的病歷自動化,胸部X光片人工智慧輔助判讀肺炎,最後再根據疾管署所提供的每日最新疫情發展,隨時更新臨床決策,大大提升成大醫院在檢疫、防疫的應變與決策。在AI輔助醫學的相加相乘效果下,對臺灣的抗疫工作助益良多。 成功大學聯手成大醫院,運用智慧醫療提升檢疫效率(照片來自官網) 其中,在病歷自動化方面,現行醫療院所多以傳統紙筆填寫或口頭詢問病史,近距離接觸恐增加醫護人員與病患接觸感染風險,成大醫院的醫療病歷自動化系統,可以讓病患使用平板電腦自行填寫包括旅遊、職業、接觸及群聚等病歷資料,上傳到電子病歷系統,醫護人員就能立即收到相關資料做臨床決策,每次平板電腦使用過後,會以酒精消毒,降低交叉感染風險也提升檢疫站效率。 成大醫院武漢肺炎篩檢 敏感度與準確性可達80及90 而「胸部X光人工智慧判讀肺炎系統模型」為成大醫院影像醫學部開發,電資學院孫永年教授團隊也積極參與,利用先前AI生技醫療創新研究中心計畫發展的肺結核X光片AI自動判讀模型,導入成大醫院的肺炎影像資料,雙方平行合作,以最快速度完成。目前用於輔助超過152例疑似武漢肺炎篩檢,敏感度與準確性分別可達80及90。 此外,針對住在學校宿舍當中執行居家檢疫的學生,成大也採取智慧化監測,由跨領域團隊所開發而成的「溫心智慧手環」,能夠連續監測隔離者的體溫與心跳,來作為預測症狀指標。當配戴者體溫上升時,可以藉由手機APP主動確認異常症狀並提醒主動就醫。現階段採取每個禮拜定期回收手環,再交由管理人員統一上傳數據資料至雲端平台做後續追蹤,從內外部全面全面提升抗疫等級。 成大跨域團隊以「溫心智慧手環」協助落實居家檢疫的政策(照片來自官網)

【導入案例】紡織業挑戰快時尚,AI庫存預測降低三成五誤差率
【109年 應用案例】 紡織業挑戰快時尚,AI庫存預測降低三成五誤差率

服飾快時尚、少量多樣、短交期 紡織產業面臨服飾品牌快時尚趨勢衝擊整體紡織供應鏈,全球品牌通路都推動零庫存、短交期與少量客製化,生產時間、品質、成本難以平衡,面對品牌商對ODM的預測與實際需求常有落差,造成物料管理與大量庫存成本積壓的問題。 由於客戶預測需求不準確,常導致備料困難,備料太多會增加積存量、備料太少可能延誤交期。本計畫規劃以國內一級供應製造商為對象,建立各客戶專屬的物料需求AI預測模型 AI計算銷售趨勢,進而預測需求 輔導團隊與神通資訊科技合作,計畫主要透過LSTM演算法來做為AI的基礎,主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計上使用簡單迴歸,乃至複雜的『時間序列分析』Time Series Analysis來預測銷售趨勢,因為,當期的銷售量通常會與前期的銷售量有緊密的關係,除非公司發生重大事件,否則,應該會循著規律變化。 銷售量預測的樣態很多種,包括營收、利潤、來客數、遊園人數、銷售產品數金額、等等,都屬於同一範疇,以下會以工廠的每月出貨批數為例,使用 LSTM 模型預測下個月的出貨批數。 物料需求分析方案執行架構 本計畫規劃以客戶為對象,建立各客戶專屬的物料需求AI預測模型,規劃階段使用三種機器學習演算法試作物料需求AI預測模型: Logistic Regression Algorithm 羅吉斯迴歸 Gradient Boosting Algorithm 梯度提升法 Deep Learning Algorithm 深度學習法 物料需求AI預測模型規劃 需求預測誤差自最高70降至35,降低備料庫存量 本計畫將客戶預估需求、所需物料類別、供應來源、客戶交期等資訊,以機器學習的方式,建立主要原物料的採購預估系統,將該客戶前五大國際客戶需求量預測誤差自最高70降至35,大幅減輕庫存之備料量。

【導入案例】RPA機器人,加速15倍電商工作效率
【109年 應用案例】 RPA機器人,加速15倍電商工作效率

人力吃重、容易疏失與錯誤、出貨效率低落 國內某黏扣帶傳產代工製造轉型升級經營品牌,並透過電商平台模式拓展新市場新商機,需要仰賴大量人力進行貨品上架、訂單整理、庫存管理、出貨追蹤,導致可處理之產品種類與數量受限,人工登打作業也常容易疏失或出錯,影響出貨效率與客戶滿意度,對於企業在電商上的競爭優勢至關重要。 企業內部往往有許多是仰賴所多的人力在各個電腦系統、網頁、email、hellip等資訊系統之間的重複作業。目前上架15個電商平台,僅更新單一電商資訊就需要工作23個月200多項商品,難以快速擴展;受限於人力,產品資訊未能詳盡,導致各電商評論中多有疑慮,影響下單,也影響下單後的滿意度。目前僅每日確認一次訂單,資訊落差達24hr。每年約有上萬筆以上的訂單要開成出貨單,通常約累積1530天才會一次開單扣庫,導致庫存永遠不準確。 精簡型用戶端,加速導入效率 輔導團隊與瑞精工科技合作,透過網頁型架構整合AI與RPA的技術,機器人流程自動化 RPA 應用程式不是安裝在使用者的本機桌面上,而是存放在伺服器,只有在使用者有需要時才進行存取。 這項技術也稱做為精簡型用戶端 Thin Client,相較於複雜型用戶端 Thick Client 必須將應用程式和資料下載到本機桌面,精簡型用戶端提供了更高的效能與安全性,精簡型用戶端不需要在本機下載。 RPA可協作服務功能包含: 網頁爬蟲:複雜網頁資料收集與整理 電子郵件操作:內文與附件的資料剖析與拆解 網頁操作:精確快速的網頁操作或填寫特定欄位資料 應用程式操作:定時定位操作其他視窗應用程式 資料處理:資料間格式轉換、拆解重組 檔案交換管理:檔案定時產出、新增刪修、FTP上傳下載 資料庫操作:異質資料庫資料交換、讀取或寫入特定DB 資料辨識:固定格式欄位資料處理;螢幕快照、截圖、英數文字解析與辨識 排程執行:可以定時重複,交叉處理以上所有流程 告警機制:Email、Line Notification等指定或廣播通知 軟體機器人技術方案執行架構 AI 軟體機器人加速訂單、庫存管理、採購等製造營運處理速度,發展自動化處理服務,避免數據重複輸入和輸入錯誤,且跨系統流程串接、247 全天候運行,透過戰情室面板資訊統計分析各電商即時銷售狀況與預測優化產品庫存。 直購訂單解析自動化機器人流程 各家電商資訊戰情室統計分析看板 軟體零失誤,降低1590成本 面對快速變化又競爭激烈的市場環境,更需要減少重複性、低產值的工作,將人力運用在更高價值的工作上。 RPA軟體機器人效率是間接作業人員的15倍,同時可以強化流程品質,趨近於零失誤率的作業執行品質,提供15至90的降低成本的機會,由於不需要大幅更動原有作業流程,因此對於業者來說,幾乎不太需要另外耗費人力重新訓練或配合新的作業流程,對於業者來說接受度也較高,甚至在軟體部署方面,僅需45周即可上線運作。

筆資訊
總筆數:76, 共9頁