精選案例

23
2021.9
【110年 應用案例】 光學產業AOI導入AI大躍進 徹底解決鏡片瑕疵檢測痛點

智慧型手機、遠距工作等宅經濟發威,資通訊產業暢旺,帶動光學產業蓬勃發展。然光學鏡片的瑕疵檢測多以人眼檢測進行,不僅耗時費力,受限於人眼容易疲勞,誤判率也是光學業者揮之不去的痛點。受惠於AI技術的演進,上暘光學導入繞射光學技術拍攝,以系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,大大提升瑕疵辨識率高達90以上。 台灣光學產值佔全球10 精密光學應用範圍日廣 光學產業為消費性電子之主流產品,於2019年即使台灣受中美貿易爭端之影響,光電產值仍達463億美元,佔全球10。其中,在「精密光學」部分,即佔新台幣870億元(約29億美元)產值。有鑑於智慧型手機鏡頭數目的增加,相較其他領域之衰退狀況,精密光學仍保有4的持續成長。 自2000年夏普推出全球首款搭載後置11萬像素鏡頭的拍照手機開始,終端消費者即對智慧型手機攝像性能的要求不斷提高,且隨著網際網路5G高速網路的浪潮來襲,帶動擴增實境AR或虛擬實境VR等應用市場的活絡,其技術的創新與應用更為光學產業增添許多動能,而應用的領域更已從智慧型手機延伸普及至汽車、家庭娛樂等大眾民生市場。 光學鏡頭對於「精密光學」經濟發展密不可分,隨著半導體技術的不斷成熟、網路速度的不斷提高,光學鏡頭的運用不僅僅在智慧型手機、平板電腦、傳統相機、播映投影、民生車載領域,其在高精密製程之工程視覺檢測、安防應用的需求更是不斷高速成長。 光學鏡頭瑕疵檢測多以人工進行。 「光學鏡片」為整體光機系統之必要零組件,其進料後與出貨前的鏡片光潔檢測不僅左右整體產線效能發展,對終端客戶的品質承諾影響更是不容小覷。 長期以來,光學產業多以人眼檢測進行瑕疵檢查,隨著生產量的持續提升,不僅人力成本持續上漲。隨著檢驗人員的年齡增長,視力逐漸衰退,誤判率更是年年增高。且近年人力招募困難,即使有幸招募,該檢驗技術養成不易,且訓練時間冗長,無法及時因應產線人力需求。 導入繞射光學技術及AI訓練模型 提升瑕疵辨識率達90以上 現行市面充斥著大量自動化光學檢測系統,並具有多項針對鏡片瑕疵的實質案例。但經由上暘光學多年來的市場探勘與評估,該系統仍無法解決現行人工檢測之問題,其主要在於光學鏡片外型為曲面且透明,並不容易拍攝到各種瑕疵狀況,且一旦瑕疵周圍有其他雜光之干擾,判斷難度更高。且不同型號的鏡片都需依瑕疵狀況個別透過旋動打光、拍攝手法的調校方可進入到判別階段,人力耗費比例仍高居不下,並不符合效益成本。 藉此,經過經濟部工業局AI計畫執行團隊的媒合,小馬光學協助上暘光電建立有效瑕疵拍攝系統。由小馬光學提供精密繞射光學的指導,基於「光」波動的特性即可以統一鏡頭拍攝方式獲取鏡片瑕疵狀況。 現行市場拍攝系統多採幾何光學方式,幾何光學以直線光行進,對於鍍膜缺失、細微刮痕、液態髒污等瑕疵並不易拍攝。合作方案導入繞射光學技術拍攝,經過全角度的精密成像可達到比一般幾何光學元件更高的對比、更卓越的降噪程度,以獲取必要之瑕疵影像。 光學鏡頭刮傷瑕疵示意圖。 為提升本案更細緻的瑕疵檢測辨識率,上暘光學基於系統拍攝後影像為數據來源,導入AI模型訓練,並將攝像系統與影像辨識整合為一產線工作站,不僅提升瑕疵辨識率達90以上,更有助於後續自動化產線發展。 此合作案的AI模型訓練由奕瑞科技提供,目前大部分廠商導入產線瑕疵檢查AOI的系統,大多採用OCR光學字元辨識,是指對文字資料的圖像檔案進行分析辨識處理,取得文字及版面資訊的過程技術,需要達到百分之百的精確度,沒有任何容錯的空間,導致誤殺的情況時常發生。 加入AI訓練模型之後,光學鏡頭瑕疵辨識率大大提升。 AIAOI解決人力不足及誤判率過高兩大痛點 此次奕瑞科技與小馬光學合作,將奕瑞的AI系統搭載在小馬光學研發的光學檢測儀器,在光學檢測瑕疵上加入AI演算法,根據客戶提供的資料與需求,訓練AI模型辨識對於瑕疵的判定,可大幅提升判別的準確度,提生良率,並增加產線效率。透過上暘光學、小馬光學與奕瑞科技三方合作,將光學產業AOI導入AI,期望能徹底解決產業鏡片瑕疵檢測之痛點。 上暘光學自2019年設立生產線後,即希望導入智慧化生產模式。有鑑於公司營運持續成長,生產量持續提升,透過該成果的導入與拓展,將大幅減緩人力需求,更可因高準確判別率指標降低生產排程影響,進而提高生產效率。 上暘光學表示,由於開發成果落地,將可引領該技術推播至光學產業上下游業者,諸如上游光學鏡片原料供應商直至下游成品應用端,包含沉浸式遊戲設備、相關曲面玻璃產品、民生車載及安防攝像裝置等。

2021-09-23
【111年 應用案例】 連聯合國都買單! 悠由數據應用運用農業數據搶攻全球商機

近2,000個在田間蹲點的日子,讓悠由數據應用公司成為台灣在農業數據領域的佼佼者,對於農作物產量、產期與價格的全盤掌握,更讓它做到能與聯合國合作,服務農地面積在短短不到3年,從24公頃擴展至超過6000公頃,飆漲250倍。對於悠由數據應用創辦人兼總經理吳君孝而言,因應全球環保趨勢,成為氣候科技X綠色經濟的數據公司,並服務全球市場,是他創業的終極目標。 工程師出身的吳君孝,在2010年進入資策會,成為涵養他深厚技術與資料科學分析實力的重要沃土,讓他練就一身功夫,得以大展拳腳。「當時,我在做資料分析工程的工作,會內幾乎所有的數據相關資料都會匯集到我這邊,加上那時執行過室內栽培箱,要種菜、種香菇,因此,農業結合數據分析就此埋下創業的種子」。 吳君孝自2016年起,就常常到農場內「蹲點」,跟農民、農改場人員聊天、交換情報,系統性地大量交換資訊,讓吳君孝的農業Know-How快速建立。 堅實的數據分析技術能量 連聯合國都買單 2017年,他離開資策會自行創業,並於2019年創立悠由數據應用公司,目前許多農企業皆是他的客戶,服務的栽種面積從24公頃快速攀升至逾6,000公頃, 2022年可望超過7,000公頃。客戶遍及海外,包括日本、中美洲市場,甚至聯合國下轄機構-世界農民組織,都使用悠由數據支持的「悠由農作物演算系統」。 悠由數據應用公司究竟是如何做到連聯合國機構都買單 悠由數據應用建置的「悠由農作物演算系統」,準確預測產期產量與價格。 首先,由於吳君孝對農業數據的精準掌握,悠由數據應用的客戶不見得要用到感測器Sensor等硬體設備,「感測器成本高,若購買便宜的設備,反而蒐集一大堆雜訊或錯誤數據,完全派不上用場」。吳君孝接著說,蒐集數據不一定要使用感測器,透過我們的數據解決方案可以更直接有效的解決問題。 例如,悠由數據應用的產品之一-悠由金錢報農產價格Linebot,係2020年與LINE合作,蒐集產地、批發、終端價格長達10年以上的數據,由悠由數據自主研發AI演算法,讓系統自主學習農產品交易價格,更以大數據與人工智慧分析進行價格預測分析,協助採購商降低交易風險,讓數據不止於生產端,更擴大應用至農產供應鏈。 以香蕉價格來說,預測價格的準確率從原本70拉高至998。吳君孝指出,不管採購商或農民,對於價格都十分敏感,現在透過悠由金錢報服務,無論是採購商或農民,都能很精準了解農產品價格波動情況。悠由數據也能針對預測作物生長情況、產量、價格預估模型等,向客戶做出最佳的決策建議。目前價格預測可達28種農作物。 精準預估產期及價格波動 悠由數據靠數據分析做出差異化服務 悠由數據應用公司所提供的「悠由農作物演算系統」內建「參數庫」,通常會搜集200~300種參數,不光是溫度、濕度等比較直觀的數據,還會依作物生理的特性去切分。透過有效動態數據的演算法,可以精準估算農作物何時會開花、何時能收成,產量是多少等。如青花菜產期預測準確率為0-4天,開花期預測今年實際使用上是0天,與現場開花時間完全吻合。而在動態的計算當中7天內都是合理範圍,悠由數據的誤差值平均在2-4 天,大多數作物產期準確率均在80以上。 透過有效動態數據演算法,全球超過120種作物可精準預估產期產量及價格。 透過有效動態數據的演算法,可以設定預估產量多少,協助在生產端做調整,悠由數據應用的客戶多以外銷的水果作物為主,如鳳梨、香蕉、芭樂、芒果、文旦、鳳梨釋迦、小番茄、洋香瓜、西瓜、玉荷包,荷蘭豆、毛豆等,尤其是毛豆,佔台灣外銷第一,種植面積達400多公頃。全球120多種作物、超過600個品種都可以適用此套系統。 台灣農業生產同質性高,容易造成一窩蜂搶種,導致價格崩跌,悠由數據應用要幫助客戶做出差異化,因此,吳君孝將公司定位在精緻的數位顧問,所採取的策略是慎選客戶,重質不重量。他分析,台灣的農業客戶著重的是如何提升良率,甚至將良率分級,規格品質均佳,走精緻化的高階外銷市場;國外客戶重視的是如何提升單位產量,國內外的操作方式有別。 除了農作水果外,悠由數據應用也將服務觸角延伸至漁業,包括虱目魚、金目鱸、白蝦等,均使用同一套系統,將各種跟魚蝦生長有關的參數建立起來,何時下料、何時收成,產量多少等,藉此預測產期、產量及價格。 悠由數據應用善用數據力量,創造智慧農業奇蹟。 因應公司的高速發展,悠由數據應用於2021年引進創投資金,進行人員擴充與業務推展。吳君孝表示,因應全球2050年淨零碳排趨勢,未來也計畫將協助客戶在土壤中種碳,有效將碳保留在土地上,同時引介客戶對接碳交易平台,與客戶共創環保商機。 吳君孝表示,剛開始創業時就將公司定位為全球化公司,因此,與國際合作的方案將不斷推出。而成為氣候科技X綠色經濟的數據公司服務全球,這是吳君孝對自己的期許及公司的長遠目標。 悠由數據應用創辦人兼總經理吳君孝

2022-03-14
【110年 應用案例】 無人智慧販賣機 黑沃咖啡一分鐘打造精品咖啡

科技也能飄著咖啡香 位於台中市南區高工路上的「黑沃咖啡」創始店,28坪的空間,飄散著文創與科技交融的咖啡香。2016年10月成立的黑沃咖啡,迄今在全台擁有7家直營店及28家加盟店,在全台已有15萬家店在賣咖啡的情況下,黑沃咖啡異軍突起的秘訣在於:運用AI科技,打造無人智慧販賣機,1分鐘煮出精美香醇的迷人咖啡。 黑沃咖啡實體店營造文創時尚氛圍圖:黑沃咖啡官網 根據國際咖啡組織(ICO)調查,台灣人一年喝掉285億杯咖啡,市場規模超過700億元;而業者星巴克調查,2018年台灣咖啡整體市場達720億元,2020年已上看900億元。近5年,台灣咖啡市場以每年約20的成長率擴展,成長潛力驚人。 咖啡需求商機驚人 每年以20速度成長 在咖啡已成為台灣人時尚消費象徵的現在,除了星巴克、路易莎等一級品牌咖啡店外,還有7-11、全家便利商店,及在街頭巷弄一家家的精品咖啡館。如何吸引消費者的目光,在淪為「紅海市場」的咖啡市場中異軍突起,就有賴彈性與創意,了解消費者的需求與口味,更是培養品牌忠誠度的不二法門。 除了實體店面外,黑沃咖啡也積極發展虛擬通路,其電商平台除了官網,還有 PChome、momo及團購主等通路, 通路多元,業績也穩定成長。 即便如此,黑沃咖啡創辦人林佩霓仍不斷求新求變,在成立前三年,由於與加盟門市的關係處理往往處於被動分散狀況,難以主動掌握市場動向,與消費者溝通的節奏及品牌跟進消費者的速度存在著一定的落差,較難以培養品牌的忠誠擁護者。 職人精品咖啡深受消費者喜愛。圖:黑沃咖啡官網 透過AI鷹眼系統爬蒐商情 市調成本大幅下降 為解決無法快速掌握市場風向與市調成本高昂的兩大痛點,黑沃咖非在2020年導入AI鷹眼系統爬搜市場商情,透過在社群網站、新聞、論壇等社群媒體全方位爬蒐各式文章,自動貼標,合適篩選,從網站每篇以5個關鍵字計算,爬蒐4,858篇文章,相當於24,290個關鍵字,所花費的成本不多,可以精準掌握到消費者的口味與偏好。 同時,在新品推出之後,不僅可即時通知加盟店,更可以透過社群了解消費者的接受程度,作為是否大力推廣的參考依據。 透過數據的蒐集,及透過AI演算法的分析,選出消費者最喜歡的口味,可以降低新品推出的風險,提升新品成功率,因此,黑沃咖非在2021年大膽開拓新市場,推出全球首創AIoT智慧咖啡創新概念,與全聯合作首間「智慧超市」合作,結合黑沃咖啡打造無人智能手沖咖啡機,讓消費者也能享受獨一無二的好風味。 洞悉消費者口味 打造AIoT無人智慧販賣機 台灣第一家全聯內湖瑞光「智慧超市」就位於台北軟體重鎮內湖區內,推出全球首創AIoT智慧咖啡概念店,可以透過手機App連動AI智慧咖啡販賣機、AI手沖咖啡機、AI真空冷萃機,一次滿足三種咖啡科技體驗,自助區部分設有黑沃咖啡AI智慧咖啡販賣機,不僅支援多種無現金支付方式,還是全台唯一以冷藏牛乳製成奶泡的無人智慧咖啡販賣機,嚴選黑沃5A級牛乳,從付款、研磨現煮、到出杯,只需1分鐘時間。 台灣第一家全聯「智慧超市」於台北市內湖區瑞光路成立。圖:全聯FB粉絲頁 全聯智慧超市設置AI智慧咖啡販賣機,使用APP操作就能享用香醇咖啡。圖:全聯FB粉絲頁 現在,加上AI科技元素之後,喝咖啡不只是純喝咖啡,也為消費者帶來更多全新的科技體驗與便利。

2021-09-27
【109年 應用案例】 紡織業挑戰快時尚,AI庫存預測降低三成五誤差率

服飾快時尚、少量多樣、短交期 紡織產業面臨服飾品牌快時尚趨勢衝擊整體紡織供應鏈,全球品牌通路都推動零庫存、短交期與少量客製化,生產時間、品質、成本難以平衡,面對品牌商對ODM的預測與實際需求常有落差,造成物料管理與大量庫存成本積壓的問題。 由於客戶預測需求不準確,常導致備料困難,備料太多會增加積存量、備料太少可能延誤交期。本計畫規劃以國內一級供應製造商為對象,建立各客戶專屬的物料需求AI預測模型 AI計算銷售趨勢,進而預測需求 輔導團隊與神通資訊科技合作,計畫主要透過LSTM演算法來做為AI的基礎,主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計上使用簡單迴歸,乃至複雜的『時間序列分析』Time Series Analysis來預測銷售趨勢,因為,當期的銷售量通常會與前期的銷售量有緊密的關係,除非公司發生重大事件,否則,應該會循著規律變化。 銷售量預測的樣態很多種,包括營收、利潤、來客數、遊園人數、銷售產品數金額、等等,都屬於同一範疇,以下會以工廠的每月出貨批數為例,使用 LSTM 模型預測下個月的出貨批數。 物料需求分析方案執行架構 本計畫規劃以客戶為對象,建立各客戶專屬的物料需求AI預測模型,規劃階段使用三種機器學習演算法試作物料需求AI預測模型: Logistic Regression Algorithm 羅吉斯迴歸 Gradient Boosting Algorithm 梯度提升法 Deep Learning Algorithm 深度學習法 物料需求AI預測模型規劃 需求預測誤差自最高70降至35,降低備料庫存量 本計畫將客戶預估需求、所需物料類別、供應來源、客戶交期等資訊,以機器學習的方式,建立主要原物料的採購預估系統,將該客戶前五大國際客戶需求量預測誤差自最高70降至35,大幅減輕庫存之備料量。

2020-03-30

應用案例總覽

【導入案例】AOI驗布員降低誤殺率,減少70複判篩檢量
【109年 應用案例】 AOI驗布員降低誤殺率,減少70%複判篩檢量

檢出率低、速度慢、招工難且人員成本高 紡織業向來為勞力密集之產業,目前全球紡織業幾乎都還是用人工進行布料檢驗,人工驗布有三大痛點:檢出率低、速度慢、招工難且人員成本高。平均一個驗布員在1小時內最多發現200個疵點,瑕疵檢出率約為70。 但人員集中力最多維持20~30分鐘,而且驗布速度一般限制在20~30cms,若超過這個時間和速度,驗布員會產生疲勞。 紡織業者購買的國內外AOI驗布機,到目前皆尚未正式融入生產線中,開始時1捲布約能測出10000個疑似瑕疵,檢出率高但正確率過篩低,迄今約減少到7000個點,但仍未達老師傅水準。 高速相機拍攝瑕疵,記錄瑕疵位置 廠商目前採用的Rule-based瑕疵辨識方法,在業主場域實際使用前需要花費大量調整時間約13個月,而且目前使用後並沒有一套可以修正自動化修正辨識模型的方案,造成廠商需要再額外花費時間進行參數設定重新調整,因此,不管是對廠商或業主場域都需要花費龐大的成本。 目前廠商的胚布驗布流程 輔導團隊與合作廠商針對瑕疵檢驗流程導入AI辨識技術與學習框架針對模型重新訓練,具體作法描述如下 1 AI-based 瑕疵辨識模型 利用大量收集到的影像資料包含無瑕疵與有瑕疵,藉由機器學習Machine Learning,如SVM,或深度學習Deep Learning的物件偵測方法,如SSD或YOLOv3,建構瑕疵偵測模型,依此模型來得知當前胚布表面的狀況,是正常品還是瑕疵品,藉此達成瑕疵辨識。 2 辨識模型重新訓練框架 根據目檢員的判斷,若有判斷錯誤的情況發生,則標記該筆影像,將該筆資料作為重新訓練的資料集,待累積至一定程度的誤判資料筆數後,系統將自動啟動辨識模型重新訓練功能,新模型產生後將自動替換舊有的辨識模型,藉此達到模型更新的目的。 導入本計畫後的胚布瑕疵檢驗流程 低誤殺率,解決產業缺工與高質化挑戰 本計畫以深度學習網路架構,重新分類經檢測出的瑕疵,包括真瑕疵與假瑕疵,並可將真瑕疵與假瑕疵進一步分類,降低傳統AOI方案的誤殺率,預期可再協助驗布員減少70以上的複判篩檢量,解決現行生產線導入的疑慮,加速擴散織布廠導入應用AI化AOI檢測方案,解決產業缺工與高質化產品的挑戰。

【導入案例】「AI智能客服維修回覆系統」,用聊天就能即時解決客戶機台故障問題
【109年 應用案例】 「AI智能客服維修回覆系統」,用聊天就能即時解決客戶機台故障問題!

成功行銷海內外的工具母機製造商,竟也有芒刺在背 國內某工具母機製造商以生產CNC線切割機、CNC放電加工機、CNC微細孔放電加工機為主,藉由高度的機電開發核心能力,提供高精度、高品質的產品,並成功開發航空引擎渦輪環線切割機,並專精於超大型客製化機種之設計製造,產品成功行銷至國內外30餘國。 雖能成功行銷優質產品,但因機台維修缺乏標準化流程與方法,所以在機台故障時,常需耗費大量人力與時間,增加機台的維護成本helliphellip 無快速維修解決管道、人員訓練不易、維修時間成本高 工具母機製造商雖能將精密機械產品成功銷售至全世界,但每次碰到維修狀況就需耗費大量人力與金錢,都因在機台維修上沒有一套標準化的故障排除流程,主要仰賴維修技師的經驗及機台的錯誤代碼做判斷。但並非所有故障狀況皆能以代碼來判斷,維修技師僅能根據錯誤代碼作初步判斷,再推判可能故障的原因,進一步做機台檢修,而維修後亦無一套標準去紀錄維修處理方式,方便之後若遇到相同狀況可以快速排除障礙。 除「無標準化的故障排除流程」外,還有「人員訓練不易」及「維修時間成本高」的問題,維修技師須經過多年的維修經驗累積,並熟稔機械、電子與機構學等皆須有基本瞭解,且在維修時若無錯誤代碼作為參考,則必須花費大量時間尋找機台問題,造成時間成本重大損失。下圖為傳統問題異常時透過email詢問的解決方式,一來一往間的時間耗費,無形中造成了很大的停機損失成本。 傳統問題異常時透過email詢問的解決方式 建置「AI智能客服維修回覆系統」,降低維修出勤成本、縮短維修時間, 同步提升產品附加價值 根據上述痛點,工具母機製造商的需求有三個部分:先要建立一個機台故障排除的「AI圖像辨識維修知識庫系統」。接著要蒐集機台故障資料數據,建立一個「機台故障狀況資料庫」。最後則可以導入AI圖像辨識與深度學習功能,透過影像辨識分析機台故障時的照片,找尋最接近之故障問題與障礙排除方式。 此「AI智能客服維修回覆系統」採用「監督式學習」為主要AI技術,其中「AI模型」部份,圖形辨識採用「CNN」Convolutional Neural Networks,針對大量訓練資料得到機台異常資料與建議維修方式,以利進行有效的AI預測。而「數據分析」部份,則採「DNN」Deep Neural Networks,達到在訓練後可得到故障異常之參考資料,回答出客戶想要的維修答案,降低維修人員的維修出勤率與提升產品附加價值;再採用「AlexNet」作為先期開發工具,因相關設定參數可以自行設定並自動執行,讓訓練出來的AI模型更貼近實際想要的樣子。 而目前工具母機製造商約有1萬筆的圖文資料,又以「圖片資料」最為大宗,系統透過圖片進行故障辨識,並以文字做為異常判斷之輔助,採用「360度環景建模」,進行圖檔資料的建檔,並儲存大量圖檔資料於公司內部伺服器,再透過感測器,蒐集相關電流、電壓、水壓與水流等資料,做為關聯判斷使用,最後以文字做為異常判斷之輔助,將相關資料傳回伺服器中做判定動作。下方為系統服務流程圖: AI智能回覆客服系統服務流程圖 此系統蒐集維修技師之經驗與機台故障狀況資訊,建立包含:機台故障狀況、機台故障圖片、機台維修與機台完修等資料庫,並紀錄整體維修紀錄,再藉由AI圖像辨識與數據分析功能,判斷出最可能的故障狀況,並透過累積的維修經驗,讓機器能夠自主學習後判斷,提供維修技師或客戶最適宜的解決方案,達到縮短技師訓練及維修時間、縮短客戶停機時間與成本,並增加機台附加產值的功效 推展「AI智能客服維修回覆系統」至各產業,發揮更大經濟效益 此「AI智能客服維修回覆系統」,先建置維修知識庫,再透過Chatbot技術,導入AI智能客服,客戶可直接透過聊天方式進行互動,即時解決客戶簡易的機台故障問題;在維修技師訓練部份,亦可透過AI快速分類,並告知可能的故障原因以及排除方法,縮短技師訓練與維修時間。順利透過AI技術解決無快速維修解決管道、維修人員訓練不易、維修時間成本高等問題,未來將以相同概念,擴展應用至其他產業,發揮更大的經濟效益 AI智能回覆客服系統-智能圖片辨識客服示意圖

【導入案例】「AI刺繡圖案辨識系統」,有效提升圖案辨識作業效率50倍
【109年 應用案例】 「AI刺繡圖案辨識系統」,有效提升圖案辨識作業效率50倍!

快時尚影響,少量多樣的代工模式成為紡織業發展趨勢 「快時尚」主打快速、便宜、時髦,台灣近年來受到快時尚興起的影響,「少量多樣化」的代工模式已成為未來紡織業的發展趨勢,業務端如何在此流行趨勢下接到訂單,為紡織業的首要目標helliphellip 客戶新圖案詢價僅能人工搜尋,費時且效率不高 國內某紡織業龍頭公司陳董事長於2018年接任「台灣內衣聯盟」理事長,經營刺繡圖案設計開發超過40個年頭,已累積開發超過30,000種刺繡花紋,每當國際企業客戶有新款刺繡圖案詢價,需耗費約25小時以「人力搜尋」,才能找出1至2張近似的圖案進行報價,因此如何快速地辨識「刺繡花紋」成為目前最大的作業瓶頸。 原始資料的清洗與整理,耗費大量時間 為建立可快速辨識並找出相似刺繡圖案之AI模型,在模型開發階段,需使用大量刺繡圖案資料進行學習。每筆刺繡圖案需要去浮水印、去除邊框、圖案規格化等前置處理,需要一位專職人員花費半年時間進行圖片預處理。而本次紡織公司共提供約30,125張刺繡圖案供AI機器學習辨識,依照不同類型的圖案,將資料標註分類為7大類。 透過圖案辨識學習,提高AI精準度 當客戶有新款刺繡圖案要詢價時,業務人員可先將圖片上傳系統,並勾選要辨識哪些重要元素,如:風格、形狀、類別、款式及尺寸等,再從AI推薦的許多方案中,挑選滿意的數個方案,並依「滿意度」加以排序儲存,將每次辨識的結果與使用者的分數存放於雲端資料庫。透過紀錄AI圖案辨識訓練之標準與重點,確認AI產出的圖片是否有遺珠以及不被選取的原因。 「刺繡圖案辨識」除了要找出近似的圖案,另外一個挑戰就是人類「心理層面」的認知,包含「不同使用者的喜好」及「使用者考慮顧客的喜好傾向」此二者均會影響挑選的結果,透過使用者的選擇結果及「滿意度」評分學習「操作者心理層面」的喜好,讓AI模型更精準。 透過建立「AI圖形辨識系統」輔助人工,即可於1分鐘內搜尋到近似的圖案與方案,大幅提高作業效率50,提升接單效率,迎擊快時尚產業。 刺繡圖案AI辨識管理系統示意圖 刺繡圖案AI辨識結果示意圖 建立「台灣紡織產業AI圖形辨識服務中心與平台」 藉由此「AI刺繡圖案辨識系統」案,未來將結合更多紡織廠商與資源,建立「台灣紡織業AI圖案辨識服務」的商業模式,將此一AI辨識系統帶入產業鏈上下游,共同提升台灣紡織業的科技水準、作業效率及國際競爭力

【導入案例】AI地址解析,查找坐標不再鬼打牆
【109年 應用案例】 AI地址解析,查找坐標不再鬼打牆

賦予地址空間坐標,協助推動「資料開放」政策 近年來政府推動「開放資料」,希望藉由資料的開放,促使跨機關資料流通,提升施政效能,滿足民眾需求,以強化民眾監督政府的力量。其中,交通資料與生活密不可分,但來源多是民眾通報的事故資料,在描述地址位置時,常以所在地的明顯目標物或門牌地址做通報;也曾有民眾反應警廣的路況報導,都沒有實際坐標。將這些原先不具空間屬性的地址,帶入地理坐標的資訊,是邁向「智慧空間決策」的途徑之一。 然而,未結構化的地址,若無人工介入處理,改善各門牌地址規格不一的情形,定位的正確率並不高,需要提升資料品質、加強資料可用性,才能創造開放資料應用的可能性,進一步協助政策推廣,並廣泛應用至休閒旅遊、求職及就業、出生及收養等各個不同領域中。 地址無嚴格規範且書寫方式不一,造成定位精確度低 Address Locator為崧旭資訊股份有限公司與研鼎智能股份有限公司GOLiFE與共同開發的「單機版門牌地址定位軟體」,提供單筆或批次地址定位的服務,為了賦予門牌地址空間屬性資料,Address Locator核心技術是以「地址解析」Parse 及「地址定位」Locate 兩階段進行門牌對位處理。首先,「地址解析」階段將擬定位門牌,依地址中行政區域階層關鍵字:縣市、鄉鎮市區、村里、路街段、巷、弄、號,拆解門牌結構;接著,「地址定位」則將前述拆分後門牌與母體地址匹配,取得定位層級及對應坐標。 然而,實際導入業務的過程中,由於門牌地址來源由不同主管機關各自維護,缺乏一致性標準,常見問題包括:包含特殊字(桃園市觀音區樹林里經建四路2之25及2之26號)、行政區缺漏(基隆市信一路28號)、重複行政階層關鍵字(桃園市平鎮區雙連里民族路雙連二段118巷12號12號)、特殊路街段巷弄(無行政區階層關鍵字)、門牌中文數字與阿拉伯數字規格不一、非現況地址等,地址型態複雜,地址精確拆分不易。 建立地址斷詞模型,成功精準定位 為有效處理各式雜亂的門牌樣態,解決現有Address Locator地址定位上的困難,導入AI及自然語言處理技術的「地址正規化」及「中文斷詞工具」優化現有門牌地址定位能力。其中「地址正規化」處理地址關鍵字缺漏、異體字、行政區缺漏等問題;而「中文斷詞工具」則協助解決特殊地址樣態造成的「拆分錯誤」,避免出現無法成功定位的問題。 透過AI斷詞技術成功解析地址 過去在處理地址定位服務時,仍需人工進行資料規格調整的前處理,故多未單以產品的方式銷售,而是涵蓋在專案計畫中,提供門牌地址定位服務。而在導入地址正規化與AI斷詞技術後,已成為一個完整的產品,大幅降低使用者人為調整的時間,並達到預期的定位精準度,且AI加值後的Address Locator地址定位軟體,已於崧旭資訊股份有限公司網站上進行產品介紹及正式上架。 經過四個月的測試與修正,AI技術成功導入原有地址定位產品中,從斷詞工具的選擇、語料的建立、模型訓練並與產品功能介接,再以完整的驗測規劃,蒐集「政府資料開放平台」與「台中市政府資料開放平台」,共62個資料集、30萬餘筆地址,完全比對率達9008,模糊比對率高達98,在比對率及處理時間上都大幅優於原產品 為推廣AI技術應用於資訊服務領域,將AI加值後的門牌地址定位服務,作為新的解決方案,並於崧旭公司網站中上架宣傳;從產品功能開始介紹,說明地址正規化方式及地址定位功能;接著,引導潛在客戶想像可以適用的情境包括:決策分析、精準行銷及其他應用,產品將協助不同領域的資料,透過門牌定位賦予空間資訊,進入二維空間探索資料的脈絡與趨勢。 門牌地址定位解決方案 賦予景點、交叉路口及興趣點空間坐標 成功開發AI加值產品再導入致力於國內智慧型交通運輸系統類型的公司過程中發現,雖能有效解決門牌地址定位的問題,但也發現實務上關於空間資訊的描述,除門牌地址外,也包括交叉路口、興趣點及地景描述等資料樣態,為了擴大AI應用的面向,「實體識別」將成為重要的後續應用,並不僅止於門牌地址定位,在資訊轟炸的時代,資料蒐集並不是難事,如何從資料中篩選出感興趣的關鍵詞才是關鍵,未來也將朝這個方向繼續發展AI技術的資訊應用服務,期能更優化此產品,創造更多商機

【導入案例】靠30年水體顯微診斷及輔導經驗,發展廢水處理及水回收AI輔助功能診斷與即時監控系統,總體能耗及成本減量高達93
【109年 應用案例】 靠30年水體顯微診斷及輔導經驗,發展廢水處理及水回收AI輔助功能診斷與即時監控系統,總體能耗及成本減量高達93%!

全台每年30億噸廢水,如何有效達到環保排放要求呢 全台每年的廢水總量約31億多噸,其中工業廢水量約占34,市鎮及畜牧廢水合計66;而工業廢水中則約有87需用生物處理;市鎮及畜牧廢水則全部需要用生物處理才能處理至國家放流水標準。也就是說全台總廢水量的96水量,約每年30億噸的廢水需經過生物處理才可以達到環保要求。 雖有「專業診斷技術手冊」及「歸納性圖鑑」,但由於現場需有顯微鏡,且需有熟悉此技術之操作人員,而業界人力變化與流動又很快,導致技術不易落實到廢水處理操作現場helliphellip 位於水質水源保護區的豆製品工廠,該如何處理廢水,令人頭大 專業診斷技術手冊及歸納性圖鑑為民國84年所出版,至今又累積更多的動態及靜態指標微生物影像,且業界人力變化與流動很快,技術不易落實到廢水處理操作現場。 地處偏僻的桃園大溪區水質水源保護區有間生產豆漿、豆腐等豆製品的食品工廠,生產後之廢水依規定必須先進行處理後,再全量回收至工廠作次級用水使用,但在落實上卻有技術性的困難helliphellip 自動監控系統AI即時線上診斷提供改善建議 提升中小型企業工廠廢水處理專業性與穩定性nbspnbsp 以實際水樣做測試,直接進行影像辨識 影像轉到辨識電腦上,經只要幾秒便可立即辨識出此種指標微生物 許多工廠被法規要求,需達到零廢水排放,處理後的水需全部回收,且任何時候均不得排放,案廠之廢水處理負責操作維護人員非專業人員,且大多由製程人員兼任,所能投入之心力甚為有限,無法穩定處理。 為此,祥泰綠色科技有限公司縝密規劃設計流程,並使用陶瓷平板過濾的新技術,結合遠端監控及每週一次到現場取樣,取回樣本進行顯微觀察、拍照與診斷,但由於案場地處偏遠,交通時間上仍有許多耗費。 為解決此問題,祥泰綠色科技除建置「自動監控系統」外,更進行「AI即時線上診斷」,提供適切之改善建議,對於補足中小型企業工廠廢水處理專業上之不足及穩定性功能提升,有顯著幫助 此種狀況也會發生在其他工廠,甚至海外的工廠,故進行跨領域合作研發,將可提升及帶動海內外之技術需求,發揮更大效益。 導入AI大幅降低廢水處理耗能與成本,將發揚至海外造福更多工廠 導入AI技術後之廢水處理系統更穩定,處理後的水質更高品質,同時達到廢水處理、水回收及水體環境的改善,同時讓總體能耗及成本減量達93。未來可加強推廣到海內外有設置廢水生物處理之工廠。

【導入案例】透過智慧感知技術,有效將商務電子郵件詐騙漏判率降低5成以上,為企業看守荷包
【109年 應用案例】 透過智慧感知技術,有效將商務電子郵件詐騙漏判率降低5成以上,為企業看守荷包!

商業電子郵件詐騙,每年造成超過百億美金損失 商業電子郵件詐騙(Business Email Compromise,簡稱BEC)已嚴重威脅全球,每年造成超過百億美金損失。犯罪組織針對受害企業以各種方式入侵、長期潛伏盜取資訊,最後策畫騙局誘使受害者匯款或與錯誤的對象交易。 此類犯罪中,關鍵的詐騙信件常與一般的商業或私人信件無異,因為與商務情境、日常往來行為相符,BEC信件甚至不需含有網址、附檔等可供技術性偵測防護的內容,讓防毒、阻擋點擊的防護措施無從著手。 電郵詐騙防不勝防,如何有效免除威脅,成為當務之急 國內某生物醫學廠商為政府五大創新產業之一、曾獲經濟部中小企業處第13屆新創事業獎,具有生技產業之高創新、高風險特性,不論是新藥、實驗素材或市場開發等資訊,甚至其與醫療及臨床實驗相關之機密個資,面對商業電子郵件詐騙(BEC)之威脅,希望透過AI之判讀能力,能提供更準確並周延的方式提醒此類惡意信件,避免受害上當,提升企業生產力,成為當務之急 善用AI辨識,防範威脅郵件於未然,有效提升企業生產力 「人工智慧輔助BEC交易意圖感知」為主要為網擎資訊軟體股份有限公司與杜浦數位安全有限公司研發之功能,可辨識來信是否含有交易意圖,並納入網擎的MailGates郵件行為分析模組,偵測具有威脅性之信件,以改善可疑威脅郵件偵測準確率。 此案例使用的即是納入上述人工智慧技術在內的「郵件詐騙防護之郵件標頭安全政策」與「郵件詐騙防護之郵件行為分析政策」兩項功能。 Openfind MailGates的「郵件標頭安全政策」功能 MailGates的「郵件詐騙防護」功能中,將可調整「郵件標頭安全政策」。以上圖為例,所有來自 hotmailcom 的信件必須有正確的From 標頭,但Reply-to 標頭會是空白,才是正確的Hotmail 信件格式,Gmail亦同。 但如果是其它來源的信件,則應該採用 MailGates 建議的過濾規則:From 和 Reply-to 都應該來自正確且相同的網域,否則極有可能是詐騙信。圖中第3條規則代表所有來自openfindcomtw 的信件,應該使用上述預設規則檢查。當信件不符合這一頁設定的郵件標頭安全政策時,依本圖的設定方式,使用者將收到標題上加註「郵件詐騙提醒」的警示,將有助於防範BEC電郵詐騙。 Openfind MailGates的「郵件行為分析政策」功能,可設定「防護等級」 Openfind MailGates的「郵件行為分析政策」功能,可設定「執行動作」 MailGates的「郵件詐騙防護」功能中,將可依需求套用「郵件行為分析政策」。該功能設計及設定方式,對於一般使用者會過於繁複,此時可直接使用「智慧偵測」方式,僅需從「寬鬆、一般、嚴格」當中決定,而系統會依近期蒐集回饋的數據,決定此三等級所適用的實際設定。較具專業能力之管理者,則可採用「自訂」模式,以詳細設定所有行為分析功能。 以「相似外部網域」為例,可列出常被偽冒的網域名稱,則系統會自動將相似但不等於這些網域,也就是意欲偽冒、欺騙使用者的網域視為較高威脅來源。此功能可讓使用者設定警示此類信件,包含:可使用標題及內文警語,透過行為分析,若系統判定疑似為BEC 詐騙電郵時,可明確提示使用者注意防範。 「郵件詐騙防護之郵件標頭安全政策」與「郵件詐騙防護之郵件行為分析政策」為實際規劃設計至MailGates郵件防護系統中的功能,結合上述AI研發成果後所有MailGates使用者將可使用此二功能對應BEC詐騙信件之威脅。 對企業客戶而言,「威脅郵件漏判」是對資訊安全威脅最大、最應改善之環節,導入網擎的BEC智慧感知機制後,即能立即並且有效降低單位內受BEC詐騙等的威脅,避免受害上當,提升企業生產力 全方位守護客戶郵件安全,拓展國內資安產業價值 網擎資訊軟體股份有限公司與AI新創杜浦數位安全有限公司合作,採用NLP及更專精的威脅分析技術,能以智慧方式感知交易意圖相關信件、提高BEC郵件攔截率,除提升客戶價值、維持其資安防禦能力外,Openfind網擎資訊身為國內郵件資安領導廠商,將持續發展郵件及訊息溝通之資安解決方案。 未來網擎計畫將BEC防護與APT沙箱防禦等技術,統合並持續擴展為一衍生性產品線:進階威脅防護(Advanced Threat Protections),藉由解決客戶在現今資安威脅不斷升高、需要強而有力、既廣且深的防護方案,提供給客戶更多價值之外,也能拓展國內資安產業的解決方案、提高產業價值。 目前較高階的資安防護市場,許多客戶只能採用國外廠商產品,其產品設計、使用流程,以及最重要的樣本來源及流程或政策設定上,常常不符國內政府機關或企業應用所需,因此藉由網擎所提供的產品服務,將協助企業守護郵件安全。

【導入案例】「農業智慧化暨大數據應用平台」,有效降低肥料施用量50
【109年 應用案例】 「農業智慧化暨大數據應用平台」,有效降低肥料施用量50%!

靠天吃飯,生菜村業者生存大不易 全球市場趨勢瞬息萬變,對農業而言,必須跟都市競爭土地和水,還要挑戰其他危機,如:緩解氣候變遷、保護自然棲地等,尤其以氣候變遷讓從農者更難以傳統方式進行種植規劃。對於以有機生菜出口之業者,得要克服氣候、蟲害等問題,讓生菜能夠達到海外客戶要求標準,是業者正面臨的課題hellip 台灣生菜村面臨的困境與需求 台灣生菜村雖然目前已採用國際認證標準流程GGAP種植,並透過豐聯資訊股份有限公司所開發的「智慧農業資訊系統」執行種植管理,但仍面臨氣候異常導致作物產量與品質無法控制的困境。 近幾年更常為了田間病害及產量問題而奔波,不僅耗費人工,在防治藥材施用上也較往年多出一倍支出,若仍一昧憑藉過往習慣的模式栽種與生產,將造成產業停滯甚至是被淘汰的局面。 故冀望透過AI加值,讓生菜村在種植上可更加資訊化、智慧化,更具分析及預測性,以利未來擴大產業出口量及拓展產業發展之多元性。 生菜村的需求現況 台灣生菜村的農產業目前僅落實「資訊化管理」,雖有數據應用概念,但無執行之作法及方向,且目前仍採人工田間巡視,靠經驗判斷用藥量。由於作物每一個季度會因環境因素而有不同的生產型態,故可經由歷史氣象數據,對比當時作物產量與採收日,推估萵苣生長所需的積溫條件,建立積溫運算模組,推估種植時程,讓系統依當下整體環境氣象溫度、溼度之數據自動分析預測,並於作物採收期間,協助田間人員工作優化,降低過往需每日現場巡視判斷下一步的工作排程。 農業資訊系統AI,要讓生菜生長無礙 「栽培環境的穩定性」在作物生長過程中扮演重要角色,了解作物的生長條件可以大幅提高生產量,品質也將有一定的水準,搭配「田間智能設備裝置」與「linebot」隨時進行農田管理及警示接收,讓管理者可快速應變以減少可能產生之損失,並協助進行病害防治、生長期、採收預估,再介接氣象局數據進行整合,建立「種植數據資料庫」,透過數據的蒐集進行農務分析,如:施肥用量規劃、不同月份萵苣生長天數分析、從氣候溫度下分析萵苣產出的質與重量,甚至是病害防治預測等。 圖一:導入數位化後前後對比差異 彙整生菜村田間設備蒐集的種植數據及外部數據如:溫度、溼度、日照值、農地肥力等分別應用在四個面向,包含: 1建立作物進度及生長障礙資訊,分析適合生長及阻礙生長的溫度區間,導入Open data數據(即時及未來氣象預測數據)形成預測標準,再搭配田間氣象感測設備進行田間監控,達成即時警示通知及預防的效果。 2結合種植數據進行生長期預測,以達成預估採收日之目標。 3藉由手機田間氣象監測,達成即時管控及調整田間作業之目標,以利生菜村有效管理人力、資材成本、作物品質等。 4彙整農地肥力數據,提供農地適用肥料使用比例,以降低施肥次數,並藉此活絡農地肥力同時改善整體環境。 圖二:數據應用說明 未來將持續優化系統並推廣至更多單位 「農業種植智慧化大數據應用平台」讓生菜村的農務者不再侷限於傳統農業的經營模式,將種植和生產管理制度化,並透過標準化的規範提升品質、穩定產量、減少人力耗損和資材成本。 提升病蟲害偵測精準度,自80 提升至100 未來希望能增加病蟲害偵測的精準度,農民可即時掌握作物狀況,使系統更加完善,也希望將此套系統的模式套用在更多作物上,藉由政府的推廣,讓更多務農者能以低成本的方式種出品質高、品質穩定的作物。

【導入案例】AI醫療影像識別系統,提升乳房惡性腫瘤辨識度
【109年 應用案例】 AI醫療影像識別系統,提升乳房惡性腫瘤辨識度!

避免非必要的侵入式切片檢查,全靠放射科醫生的專業判斷 醫學影像辨識是放射科醫生的重要工作,醫生必須根據病患的檢查資料,提供專業的判斷。當發現某個腫瘤時,必須判斷是否為癌症;可行的方式包括「非侵入式的醫學影像」以及「侵入式的切片檢查」二種。 切片檢查的優點為可以提供非常準確的診斷,但由於是侵入性作法,因此,如果病情轉趨嚴重的可能性很低,醫師與病人將避免這個做法。而放射科醫生的職責之一就是提供相關的專業判斷,盡量做到最合乎理想的狀況。 放射科醫生不堪負荷,判斷腫瘤良惡性標準浮動,醫療品質曝危機 隨著醫學影像檢查的普及化,加上預防醫療的觀念逐漸興盛,放射科醫生的負擔日益加重。一位醫師需同時負責多位病患,在長工時、多病患的情況下,導致放射科醫生在依據影像判斷腫瘤良惡性時標準會有所浮動,致使患者無法獲得最佳的醫療品質。 大世科台大研發「AI醫療影像識別系統」,導入醫療院所,有效提升腫瘤判讀效率與正確性 大同世界科技股份有限公司與臺灣大學生醫電子與資訊學研究所研究團隊共同開發「AI醫療影像識別系統」,訓練出的模型可針對乳房X光攝影做良、惡性之判讀,正確率達85,且此系統已導入中部某一家醫療院所影像醫學部進行POC驗證,有助降低放射科醫師的工作量與病患等待檢查報告的時間。 乳房腫瘤AI判讀系統示意圖 未來也將進一步定義乳房影像報告、資料系統BI-RADS分級與AI良惡性判讀間之關聯性,將影像判讀從原本二分法轉變為機率表現之BI-RADS分級,協助院方建立共同標準,增進不同科別醫生協同合作之效率。 導入AI識別系統之效益 複製成功模式,為AI醫療影像大數據時代奠基 此AI醫療影像識別系統的發展模式,將可套用在不同種類之醫學影像,包括:電腦斷層掃描、超音波攝影等;並可整合自然語言處理功能與結合病理分析報告,為AI醫療影像大數據時代奠定基礎。

【導入案例】「企業專利監控之AI數據分析平台」,一鍵搞定專利分析與發展趨勢
【109年 應用案例】 企業專利監控之AI數據分析平台,一鍵搞定專利分析與發展趨勢!

如何有效率地分析海量增長的專利資訊,挖掘潛在價值 專利是技術、市場和競爭資訊的寶貴來源。然而,公開的專利文獻總數已高達12億件,僅去年一年就新增630萬件。如何才能讓這些海量專利文獻為己所用 專利分析為充分挖掘專利資訊的價值,提供了一條不可或缺且切實可行的途徑。通過專利分析,可以瞭解自身與競爭對手各自專利組合的優勢、不足和機會,以及全球專利申請趨勢、技術全景及可能存在的空白領域等。 然而專利分析要求透徹理解底層資料,包含:資料的用法和用途,以及能夠解決的問題等,如何才能有效運用及分析海量資訊,正是最讓人頭痛的問題helliphellip 非結構化的資料型態,只能透過人工閱讀整理,十足惱人 「專利說明書」是融合法律與科技用語且具有法律效力的文件,屬於非結構化的資料,過去各項檢索分析都是以人工閱讀內文與整理,實乃曠日廢時,且經常發生追趕不上訴訟時程的情況。在協助企業進行專利佈局時,常面臨無法量化競爭對手與客戶之訴訟風險程度,也難以量化專利之品質與價值,造成國內某企業智權管理公司之業務範圍無法進一步地擴大,也無法促進外界對專利加值應用的瞭解程度。 近年來,企業智權管理公司也開始協助企業中的研發人員,提前掌握影響產業未來發展的重要科技及其專利競爭情報,能使相關人員更從容地進行專利佈局,並提高專利品質與價值。然而,大部份業務範圍在代理專利軟體,如:知識產權運營管理資訊系統 IPServ,主要是協助企業或個人進行智慧財產權管理,但目前並無為企業或個人提供「專利監控」類數據分析的服務。 知識產權運營管理資訊系統IPServ 這些專利軟體包含專利檢索、管理與維護等,而專利大數據是否能夠成功輔助企業掌握市場現況、專利價值、訴訟威脅及監控競爭對手的不法侵權行為,全是仰賴專利數據之取得。但專利數據之清理非常費時,所以一直是個讓人頭痛不已的問題,直到台灣資料科學股份有限公司研發出「企業專利監控之AI數據分析平台」,才終於出現曙光helliphellip 傳統專利分析曠日廢時,改用「企業專利監控之AI數據分析平台」, 一鍵搞定 「企業專利監控之AI數據分析平台」的發想,是使用專利申請的案件中之「專利編碼」與「公司產業別」等具鑑別力的影響因子,透過大數據分析,並增加相關新聞資料,再以機器學習方式透過AI輔助專家,分析市場現況、避免訴訟威脅以及監控競爭對手的不法侵權行為。 這些最後萃取出來的因子也將影響個股的表現,對此可以根據不同的企業屬性和發展方向,朝向「客製化大數據分析」提升企業的戰略位置。希望透過平台的搜尋可以快速讓企業於新增產品線時,了解競爭對手的專利佈局,避免侵權的情況發生;或廠商要找合作夥伴時,也可以從有高度研發的公司來篩選,將此平台作為競合關係的好工具。 系統操作流程圖 傳統上專利分析曠日廢時,需透過人工檢索專利、閱讀專利資料,才能產出一份專利分析報告,現在只要藉由「企業專利監控之數據分析平台」,使用者可輸入某年度或自己與競爭對手的公司名稱,經過系統分析後,即可快速得知該年度及公司間的技術布局、變化趨勢監控等結果,節省作業時間及人力。 例如,若要知道市場上對於物理、化學、電學的相關技術發展現況,可分析IPC專利號碼,檢視哪些公司的持有專利有群聚現象,藉此研判該群聚專利為相關技術或相互依賴的技術,了解公司之間在專利布局上的相似度、產業趨勢,縮短決策時間,搶先布局或做專利迴避設計。 透過人工智慧改善傳統的人工專利檢索的作業以提高工作效能,「專利監控平台」幫助專利分析人員更方便了解特定技術領域的專利發展現況,以預測未來技術研發方向。而「專利布局」是企業針對專利組合,透過整合市場、產業、法律等因素,構建嚴密的保護網,形成有利的研發方向、降低侵權風險。 嚴謹的專利布局可幫助公司在戰略規劃時避開地雷區,避免不必要的訴訟戰;或可透過搶先申請專利及購買專利,擴大自身技術的保護範圍,而要達成此目的,關鍵是經由分析大量的專利資料,領先同業找出趨勢。以本公司開發之產品線人流資訊流天線為例,專利監控平台可針對產品之專利組合,達到上述目標。 人流資訊流天線產品圖 未來,將針對專利文件內容之標題與摘要進行文字探勘(Text Mining)。前期人工輔助,後期採機器學習方式,建立「專利詞庫自動斷詞系統」。應用此斷詞系統將標題與摘要進行斷詞,計算字詞頻率(TF)與反轉文件頻率(IDF)。透過統計方法(如相關相數),擷取專利文件特徵,找出專利之間強關聯性之相關字詞。提升探勘專利之相似度,更進一步了解專利訴訟之風險。 協同專利業者,打造更便利的「企業專利監控AI數據分析平台」 經由「企業專利監控之AI數據分析平台」的「平台網絡圖」查詢,可讓公司或事務所快速看到其相關的產業公司佈局在哪些專利上。對於「專利」而言,各公司可以思索應全由自家研發申請,或直接從產業龍頭單獨購買專利授權。對於「公司產品」而言,要商品化時可因應時代變遷採取不同的策略,前幾年也許是敵對的,隨著產品發展的差異而是今日的盟友。 專利監控平台顯示2009年度大立光電與其相關產業之網絡圖 而在「公司交叉比對」功能查詢中,可一次選擇多年,對於和主要公司相似度較高的對比公司,從年度變化可了解雙方是否發展太過相似的專利,而使二者處於高風險侵權的風暴範圍之中。當數據庫資料更多時,還可以進一步計算「專利風險率」,讓習慣讀數字或圖表的使用者能從另一角度快速知彼知己。甚至未來增添更多參數後,可以估計「侵權金額」,但取得參數內容,還需與專利業者協同合作,一同打造更便利的專利風險監控平台。 台積電與華亞科技、力晶科技之間相似度指標的走趨圖

筆資訊
總筆數:76, 共9頁