精選案例

26
2020.5
【109年 應用案例】 自動篩果系統:利用類神經網路、AI、自動化提高篩果效率,提昇 10 倍效率、增加 17 億產值、93%準確率大幅增加品質的解決方案

臺灣地處亞熱帶,又有多樣化的地理環境,相當適合種植水果;舉凡香蕉、鳳梨都曾是紅極一時,讓我們引以為傲的熱門出口商品。然而,因為消費國農民逐漸掌握到了臺灣水果優良的種子,可以自行種出同等品質但是更加平價的相同水果,致使我們的水果出口面臨重大危機目前,臺灣的水果如芒果、芭樂雖然仍有一定競爭優勢,但若是未能比其他國家更進一步,假以時日仍然會落入同樣的問題當中,不容我們輕忽水果品質與品牌價值是臺灣水果產業於國際間保持競爭力的不二法門。 篩果工作是水果產銷當中決定品質的主要環節,目前業界卻囿於高度倚賴逐漸老化的農村人力,致使缺工下篩果成本上揚,良率也極難一以貫之保持穩定;因此,篩果工作的自動化,就成為相當重要且急迫的課題。國立清華大學電機工程學系李祈均教授帶領團隊透過攝影機、輸送帶、以及 AI 結合出的自動篩果系統,目前具有高達 93 的準確度。一個產季就能為芒果單一商品提昇 17 億的產值。隨著 AI 系統的逐步發展,未來準確度可望提昇外,也可以將同樣的系統應用在其他水果之上,進一步推動水果全程產銷履歷,帶動臺灣水果產業科技化升級。 篩果工作非常仰賴稀缺的人力,農村人口老化更是雪上加霜 李祈均教授(後稱李教授)在一次聊天中,從曾一起在美國讀書的同學余(化名)處認識到水果產業面臨的困境。余是一家臺灣數一數二的大型水果國際進出口廠商的年輕第二代。根據余投身產業多年的觀察,臺灣水果初期生產出口往往可以得到相當不錯的利潤,但消費國的果農往往在取得種子之後,就會嘗試摸索在地育種,以降低成本獲取更大利潤。臺灣水果若是在品質或品牌價值上無法超出消費國果農的產品,就會因為競爭者的成本確實較低,而被淘汰。 篩果是將水果按照品質分級,如果連最低規格皆無法通過,則會打消為廢品。實務上,篩果這個工作會由農民集貨場以及經銷商的包裝場分別執行,但如果集貨場處理得不好,而包裝場又在前期抽樣沒做好,就會造成經銷商的損失,最多甚至白白打消 30 的 A A 等級的水果。 這個工作極度仰賴有經驗的篩果人員,比較有經驗的篩果人員,不只可以控制好品質,降低篩果過程中傷損水果的機率,甚至有能力額外揀出約莫 10 的 A 等級水果,大大增加許多價值。令產業憂心的是,有經驗的篩果人員因為農村高齡化而逐漸凋零,成為非常稀有的資源。這樣稀有的人力資源每每在農忙時期炙手可熱,大家爭相搶奪,搶不到的農家或是經銷商,只能遷就於比較次級的人力,蒙受承擔額外損失的風險,付出更大的成本;最不幸的狀況,便是遭受前述 30 的打消損失。 篩果是水果生產後期包裝銷售時的重要流程,若是品質控管沒做好,將會造成巨大損失。 AI非常適合協助篩果工作,只不過數據集的取得困難 李教授在了解余的困難之後,發現這是一個可以利用 AI 來解決的問題mdash篩果雖然高度仰賴具有經驗的篩果人員,卻是一個重複性很高的工作;而處理重複、資料量大的工作一直都是 AI 的強項。 不過,在研發工作還沒有開始,就面臨第一個令人頭痛的問題:要從哪一種水果開始 首先,合適的水果需要有一定的出口量,而且必須是仍具有相當成長空間的果物;如果是部分較缺乏國際競爭力者如香蕉、鳳梨等,廠商已經沒有餘力投下更多資金購買設備,更遑論在研發時期贊助經費或是協助研發團隊實驗了。 既然有了想法,當然就要加緊腳步盡快開始實行於是,目前仍保有一定規模優勢的愛文芒果,雀屏中選成為自動篩果系統的第一個實驗對象。 芒果採收後的第一關,就是在集貨場進行第一次的篩果,待篩果完成之後,即送至包裝場進行熏蒸消毒、準備銷售或是裝櫃外銷。然而,對於目標市場有較深入了解的外銷廠商,對於品質會更加嚴格要求,往往在包裝場熏蒸之前,還會再行篩果一次以把握水果品質。由於集貨場的員工是以篩檢的芒果數量而非芒果品質計算工資,以量取勝往往是他們工作的傾向;如此一來,後一手包裝廠為了選果品質,便不得不重工篩果而徒增勞務。解決方案看來簡單明瞭mdash只需要透過攝影機、分級分流的機器輸送帶,以及搭配上可以從外觀分辨芒果品質的 AI 就能夠自動篩果。但是,難點就在於 AI 要如何分辨芒果的好壞呢對,就是必須從建立一套訓練數據集開始為了建立數據集,李教授團隊建立網站,讓所有人都可以上傳芒果照片並且為它們分級;在完善數據集後,就能利用它們來訓練 AI。 李教授團隊研發出的篩果機透過AI圖像辨識篩選品相上佳的芒果。 經過訓練的 AI 準確度高達 93,一個產季就可以提高 17 億產值 108 年,透過工業局(現經濟部產業發展署)與 AI HUB 的協助,成功加速技術進場實證。 李教授團隊在 2 個月實證期間累積 10 萬筆數據,經過訓練的 AI 準確度高達 93 比起正確率 70 的人工作業高出許多,在品質上有了很明顯的差異。以出口價值計算,一個芒果產季預估可望提高 17 億的產值更可以節省人力成本達 1866 萬,並免於前文所提的季節缺工問題。 除此之外,因為不再需要集貨場和包裝場各篩果一次,也減少篩果過程當中人為疏失所造成的損耗。待技術更臻成熟後,未來也能將同樣的系統應用在其他的臺灣出口水果如蓮霧、芭樂上,讓臺灣的水果產業更上一層樓。 既然是 AI,就能經由不斷訓練來提高準確度,透過演算法的持續調整,以及與設備廠商的合作,可以大幅提昇產能。另外,李教授也在廠商及政府的贊助之下舉辦 AI Cup 競賽,讓更多團隊使用同樣的數據集來繼以推動演算法的發展,期待能帶動更多有興趣投入的業者進一步合作。 AI HUB 上的愛文芒果等級辨識系統 李教授團隊期許透過 AI 的力量,能夠建立水果從生產到包裝運輸的完整履歷,藉以提昇臺灣水果的品牌價值除了期望讓臺灣水果在國外競爭激烈的市場搶占一席之地,也能隨著質量兼備的供貨,讓臺灣水果在國際上大放異彩,成為臺灣之光。 臺灣水果在國際市場上仍有一定競爭優勢,但隨著外銷出口,也面臨消費國果農的競爭壓力。 每年芒果季輕鬆省下 1866 萬,而且大幅提高品質。 nbsp

2020-05-26
【109年 應用案例】 動態車牌辨識系統 省時省力方便管理

從事馬達相關設備製造長達40年的九德松益公司,為有效監控進出廠區的車輛,導入辨識率高達989的動態車牌辨識系統,透過AI技術,讓車輛管理省時又省力。 車牌辨識系統是一種智慧影像分析的基本應用,利用攝影機,擷取車牌的影像後,將影像進行分析與演算,達到車牌辨識的應用。提供車牌辨識服務的康橋科技成立於 2008 年,由一群 LED 研發團隊,及軟體開發團隊所組成,致力於 LED 產品應用、開發 LED 投射燈車牌辨識,及 Etag 兩合一整合系統,提供給國內外公共工程標案為主。 此次,資策會AI團隊與台灣能源技術服務產業發展協會合作,探尋 車牌辨識技術實證場域,發現九德松益公司現階段遭遇到的問題包含下列三項: 1 公司大門目前無柵欄機或其他管制設備,進出車輛完全靠人力管制及記錄,紀錄方式也是完全人工處理,如果人力不在現場時,車輛進出完全無法管制 2 當有狀況時,現有的監控系統必須慢慢地去調閱資料尋找有問題的車輛,非常耗時且不方便 3 找到影像時車牌部分也無法清楚辨識,找到也沒有辦法確認車主 解決三大問題 提供四大功能 了解到企業實際需求之後,依據康橋科技所建立車牌辨識系統架構,實際到場域進行實證,在管理室設置監控電腦。 康橋科技車牌辨識系統架構 車牌辨識系統於安裝後之使用現況,主要完成功能如下: 1 車輛進出時,透過高解析智慧型攝影機,可以辨識出車牌及影像,紀錄車牌號碼及車輛進出的現況 2 當需要調閱檔案時,可以利用時間搜索車輛資料,或是搜索車牌資料,可以直接找出需要的影像檔案,可省去不少時間 3 由於使用高解析智慧型攝影機,對於影像有大幅度的提升,如有狀況可以清楚辨識 4 當車牌資料有登記時,還可以建置黑白名單資料庫,方便警衛人員管理 車牌辨識的優點是可以將車輛進出管制全面自動化,減低人力成本;而使用軟體來辨識進出車輛,車牌不易遭人冒用,同時免除遙控器、感應磁扣遺失與轉借外人之困擾;進出不須按遙控器、不用搖下車窗,遠距離車牌辨識,行進之間即可開閘門,省去停車等待的時間。 康橋科技車牌辨識系統設置於管理室 資策會AI團隊表示,該團隊不斷與相關公協會合作,從挖掘企業需求、訂定主題、鏈結團隊、導入實證等有系統的方法,來協助有需求缺口的企業,媒合AI技術研發團隊,導入AI技術,解決產業問題,來達到產業AI化的目標,未來,將持續協助企業運用科技工具突破經營困境。

2020-03-19
【110年 應用案例】 峰漁運用AI知識化養魚 有效提升10%水產產量

漁業是海島型經濟的重要產業,然而,養殖漁業近年面對嚴峻挑戰,包括氣候變遷、人力短缺與成本上揚等,尤其是未來10年農業就業人口有將近11萬名因高齡化退場,為此,水產養殖朝智慧養殖的需求日益殷切。 成立於2014年的峰漁公司,以自行水產養殖為基礎,開發出獨有的友善環境養殖模式,運用AI知識化養魚,有效提升10水產產量,降低15人力時間成本。 「峰漁」二字的涵義深厚,「峰」代表好山,「漁」代表好水,期望企業能讓台灣永遠有好山好水;也是「豐腴」的諧音,希望產品帶給消費者飽滿健康的身心。公司創辦人劉建伸歷經養魚學徒、募資、租借魚塭、創立養殖公司、開創品牌及推展銷售等創業歷程,實屬不易。 勞動人力短缺與漁業從業人員年齡老化 養殖漁業藏隱憂 臺灣現階段的水產養殖仍以傳統式養殖魚塭為主,養殖技術仍靠口耳相傳的經驗傳承為主,加上勞動人力短缺與漁業從業人員平均超過60歲,導致無法有效穩定的提升產能與良率,此種飼育方式在水產疾病控制上產生一定的難度,又為了進行疾病防治,而使得藥物濫用、環境汙染與水質生態破壞的可能性大增,造成惡性循環,使得養殖品質下降。 此外,臺灣養殖市場也有651水產養殖工作者遭遇技術不足困擾,傳統養殖戶在有限的IoT感測器支持下,主要仍然是憑藉本身的經驗知識來進行水質管理、飼料投餵、疾病發現等養殖作為,此種極度倚賴個別漁民能力的養殖管理,一旦老師傅凋零,不僅面臨傳承接班的議題,也難以穩定的供應一定品質、數量的漁獲,恐將造成整個養殖漁業從養殖到銷售端的困境。 為了改善漁業養殖無法經驗傳承的痛點,同時也為漁業在養殖上具備「數位化」基礎,當務之急必須從開始搜集養殖行為數據建構AI服務為重要開端。 漁業數位分身技術 協助漁民轉型智慧養殖 峰漁公司在資策會的協助下,引入「漁業數位分身」技術,以動態調整養殖排程,也就是說,依照魚類的物種、習慣、變因來調變養殖排程,用AI養殖技術來養好魚,不僅有效提升10水產產量,同時更降低15人力時間成本。 具體作法上,先將每個物種如鱸魚、台灣鯛等,將養殖的魚池、吃料及決策行為數位化,從放苗至收成的階段,所經歷的季節氣溫變化,全部一一記錄下來進行數位化,逐漸將老師傅的經驗方法紀錄存成豐富的資料庫。 針對紀錄下來的資料,分析複合式的變因,找出最佳的養殖行為,產生動態式的養殖排程。 一池一池的紀錄養殖師傅的數據經驗。 然而,養殖行為普遍依賴經驗法則,即便是資深的養殖師傅,也難確保找出最佳答案,因此提出新的做法解決此議題:即「透過預測養殖行為與水質、飼料投餵的過往資料與養殖互動,並從水質、養殖反向評價養殖行為,藉此找出最佳的養殖行為」,透過每天時程排程,給予漁民最直覺式的操作建議。 為了持續滾動優化動態養殖曆,會反覆朝向三步驟循環進行模型疊代: 1向模型輸入現在的養殖曆; 2模型預測未來的環境; 3用未來的環境修正養殖曆的缺點,藉此得到新版的養殖曆。 在過程中,同步藉由養殖專家的經驗來建立養殖行為與環境之間的因果關係。 動態養殖曆程的建立及科技養殖建議服務,提供了可回溯、追蹤詳細的養殖歷程,是少數可將養殖數據化的技術,漁民在知識的建構上可以很快速、簡易的方式記錄日常行為,不需占太多時間,長期下來可以減少15人力時間成本、平均提升10產量營收。 智慧養殖成效卓著 減少15人力提升10產量 同時,也可將養殖曆延伸至不同的水產物種,如白蝦、虱目魚、文蛤、台灣鯛等,依各池產生不同規格的養殖排程,收成的水產物種依不同規格溯源追蹤,建立安心食品一條龍服務。 峰漁主要產品分為兩類,一類是水產養殖模組,包含魚苗、飼料、資材及益生菌、生產養殖規劃與製程、監測等,可單獨販售也可模組輸出。 峰漁公司出產的優質水產品,屢屢獲得大獎。圖峰漁公司官網 另一類產品是優質水產品,包含鱸魚排、鱸魚丸、無油鱸魚丸、鱸魚水餃和鱸魚高湯,產品榮獲各種獎項,包含2017 年屏東十大伴手禮、「菌沛尖吻鱸魚排」榮獲2017 年農委會評選銀髮族友善食品、「菌沛無油鱸魚丸」榮獲農委會評選2018 年銀髮友善食品金饌獎、「好漁夫鱸魚水餃」及「精燉鱸魚高湯」榮獲2019 年農委會評選銀髮族友善食品,連續獲獎代表峰漁公司的水產品「品質」看得見也食在安心。 此外,峰漁擁有專屬符合國際需求的水產種苗,例如:純海水養殖的吳郭魚種苗及自行選育海水台灣鯛種苗(FY-01),是許多國家養殖企業引領企盼的品項,也依照環境設計的養殖模組、疫病監測工具及飼養資材,提供客戶更穩定的收益。

2021-09-28
【110年 應用案例】 無人智慧販賣機 黑沃咖啡一分鐘打造精品咖啡

科技也能飄著咖啡香 位於台中市南區高工路上的「黑沃咖啡」創始店,28坪的空間,飄散著文創與科技交融的咖啡香。2016年10月成立的黑沃咖啡,迄今在全台擁有7家直營店及28家加盟店,在全台已有15萬家店在賣咖啡的情況下,黑沃咖啡異軍突起的秘訣在於:運用AI科技,打造無人智慧販賣機,1分鐘煮出精美香醇的迷人咖啡。 黑沃咖啡實體店營造文創時尚氛圍圖:黑沃咖啡官網 根據國際咖啡組織(ICO)調查,台灣人一年喝掉285億杯咖啡,市場規模超過700億元;而業者星巴克調查,2018年台灣咖啡整體市場達720億元,2020年已上看900億元。近5年,台灣咖啡市場以每年約20的成長率擴展,成長潛力驚人。 咖啡需求商機驚人 每年以20速度成長 在咖啡已成為台灣人時尚消費象徵的現在,除了星巴克、路易莎等一級品牌咖啡店外,還有7-11、全家便利商店,及在街頭巷弄一家家的精品咖啡館。如何吸引消費者的目光,在淪為「紅海市場」的咖啡市場中異軍突起,就有賴彈性與創意,了解消費者的需求與口味,更是培養品牌忠誠度的不二法門。 除了實體店面外,黑沃咖啡也積極發展虛擬通路,其電商平台除了官網,還有 PChome、momo及團購主等通路, 通路多元,業績也穩定成長。 即便如此,黑沃咖啡創辦人林佩霓仍不斷求新求變,在成立前三年,由於與加盟門市的關係處理往往處於被動分散狀況,難以主動掌握市場動向,與消費者溝通的節奏及品牌跟進消費者的速度存在著一定的落差,較難以培養品牌的忠誠擁護者。 職人精品咖啡深受消費者喜愛。圖:黑沃咖啡官網 透過AI鷹眼系統爬蒐商情 市調成本大幅下降 為解決無法快速掌握市場風向與市調成本高昂的兩大痛點,黑沃咖非在2020年導入AI鷹眼系統爬搜市場商情,透過在社群網站、新聞、論壇等社群媒體全方位爬蒐各式文章,自動貼標,合適篩選,從網站每篇以5個關鍵字計算,爬蒐4,858篇文章,相當於24,290個關鍵字,所花費的成本不多,可以精準掌握到消費者的口味與偏好。 同時,在新品推出之後,不僅可即時通知加盟店,更可以透過社群了解消費者的接受程度,作為是否大力推廣的參考依據。 透過數據的蒐集,及透過AI演算法的分析,選出消費者最喜歡的口味,可以降低新品推出的風險,提升新品成功率,因此,黑沃咖非在2021年大膽開拓新市場,推出全球首創AIoT智慧咖啡創新概念,與全聯合作首間「智慧超市」合作,結合黑沃咖啡打造無人智能手沖咖啡機,讓消費者也能享受獨一無二的好風味。 洞悉消費者口味 打造AIoT無人智慧販賣機 台灣第一家全聯內湖瑞光「智慧超市」就位於台北軟體重鎮內湖區內,推出全球首創AIoT智慧咖啡概念店,可以透過手機App連動AI智慧咖啡販賣機、AI手沖咖啡機、AI真空冷萃機,一次滿足三種咖啡科技體驗,自助區部分設有黑沃咖啡AI智慧咖啡販賣機,不僅支援多種無現金支付方式,還是全台唯一以冷藏牛乳製成奶泡的無人智慧咖啡販賣機,嚴選黑沃5A級牛乳,從付款、研磨現煮、到出杯,只需1分鐘時間。 台灣第一家全聯「智慧超市」於台北市內湖區瑞光路成立。圖:全聯FB粉絲頁 全聯智慧超市設置AI智慧咖啡販賣機,使用APP操作就能享用香醇咖啡。圖:全聯FB粉絲頁 現在,加上AI科技元素之後,喝咖啡不只是純喝咖啡,也為消費者帶來更多全新的科技體驗與便利。

2021-09-27

應用案例總覽

【導入案例】「AI罐頭封膜檢測系統」,提升產品出貨良率,為食安把
【109年 應用案例】 AI罐頭封膜檢測系統 提升產品出貨良率,為食安把關

傳統製造業品管靠目測,品質、商譽皆受損 據IDC(國際數據公司International Data Corporation, IDC)研究,台灣製造業在2018年有25的業者導入人工智慧。主要著重在兩個需求,一是品質檢測,二是設備的預知保養。 然而在許多傳統製造產業當中,工廠產線的成品檢測流程仍由人工負責。人工作業的問題在於往往會因工時長、人眼疲勞而導致品質參差不一,或是肉眼無法挑出細微的瑕疵,而可能因不良品出貨而產生賠償損失與商譽受損。 封膜不良影響甚鉅 國內某椰果產品製造商,在椰果產品製程中,產品封膜完整性是由人工抽樣檢查,但因人力資源安排與產線速度不慢這二個因素,目前抽檢覆蓋率為25。封膜不良的產品一旦出貨,不但造成單罐產品損害,也將影響同箱產品、運輸工具汙損,並招致蚊蠅,對整體造成危害,影響商譽。另外,因產品為高濃縮加工食品,封膜不良若無檢查出來,出貨後,買家也未檢測,將可能造成食安風暴,影響甚鉅 因此導入「AI品管檢測方案」,除了提高檢測覆蓋率,也期望透過AI系統可準確挑出封膜不良產品,減少不良品出貨的機會與後續可能產生之食安問題。 智慧封膜良率檢測,全面覆檢 封膜辨識系統示意圖 由零次方科技有限公司貢獻影像類AI系統之Know-How,搭配巨鷗科技股份有限公司的系統整合能力,共同開發「智慧型工廠封膜良率檢測系統」,整合並導入椰果製造商之產品製程中,提高產品封膜檢測涵蓋率。 在AI能量加值前,原產線生產100箱(約600罐),良率在95前提下,約有30罐不良品,但因檢測覆蓋率僅25,因此僅檢測出1罐不良品;然在加值AI檢測後,檢測覆蓋率提升為96,可檢測出約28罐不良品,大大提升不良品之檢出率,進而降低未來可能產生之損失。 不論以Add-On方式導入或Build-In模式加值,均可為產業提供解決方案 檢測服務流程示意圖 此封膜檢測系統服務框架,未來將可以Add-On方式導入至其他類似檢測類製程之品管檢測環節,例如:整合進飲料工廠封膜、其他罐裝產品封膜產線流程,亦可與封膜機硬體製造設備商做軟、硬體整合,以Build-In模式加值封膜機,提供產業完整性解決方案。

【導入案例】有了「漁產品配貨機器人」,預測市價、精準配貨、報表自動化供應鏈,AI客服樣樣行
【109年 應用案例】 有了「漁產品配貨機器人」,預測市價、精準配貨、報表自動化供應鏈,AI客服樣樣行!

遠洋漁貨的新鮮度與品質影響銷售額 鮭魚、石班、土魠、白鯧等食用深海魚類是我國民眾喜歡的魚種,根據2018年漁業統計年報資料顯示,遠洋漁業所帶來的產值高達357億元,佔台灣漁業總產值近40台灣遠洋漁獲主要進口地分別有挪威、蘇格蘭、斯里蘭卡、加拿大、澳洲、印度、紐西蘭、馬爾地夫等地。而三角貿易的部份是由中東、印度、挪威、斯里蘭卡進口,再將冷凍及冰鮮鯊魚貨轉出口到中國大陸。 國內某漁產品進口貿易商之魚貨主要以冰鮮魚貨為大宗,特色在新鮮度及良好的品質,因此魚貨均採空運來台,在機場通關後,直接由交由貨運業者分送全台各大批發魚市的代理商或經銷商。因此每日能否精準預測各漁市交易價格及代銷商銷售額,便成了當日獲利與否的關鍵 目前並無有效預測隔日漁貨價格之方法 漁產品進口貿易商銷售魚貨給批發商的方式分為兩類,一為「代銷」:主要以抽佣方式,代理商從販售收到的貨款中扣除必要費用與佣金後,餘額全交付貿易商;二為「貨品賣斷」:直接將魚貨賣給下游經銷商。兩者中又以代銷方式為最大宗,代銷商於出售魚貨後,當日便會將售價回報給企業,企業主依報回之售價扣除佣金後,定期向代銷商收取貨款。 因此,每日是否能把不同漁貨送往相對高價的漁市銷售,變成了當日獲利與否的關鍵;然這關鍵因素又有賴於是否能精準預測各漁市交易價格及代銷商銷售額。但隨著氣候變遷導致海洋溫度暖化,漁獲量也難以估計的情況下,各地漁市的價格波動不若以往易於掌控。 目前並無有效預測隔日漁貨價格之方法,發貨全由工作人員依經驗法則做決策,難以掌握獲利因素,只能看老天與市場價格的臉色,每日都存在虧損風險。 智能價格預測-漁貨交易利器 微影資訊科技有限公司透過網路爬蟲程式,自動擷取台灣各漁市的交易日之價量資訊及當地氣候觀測站所記錄之氣候資料,再以遞迴神經網路搭配機器學習所建立模型,預測隔日的漁產品交易價格。搭配氣候資料作建模。 AI智能價格預測模型運作流程 漁產品的交易價格來自「漁產品全球資訊網」,其網站記錄台灣各漁市的交易日之價量資訊。氣候資料則是由「觀測資料查詢系統」取得,包含降水、風向、風速、氣壓等指標數值,且以上二網站為公部門建置的開放資料,資料量充分、詳盡且穩定。 此「AI智能價格預測模型」以銷貨占比最大之基隆漁市為目標,將氣候資料與漁市資料合併為模型的「輸入變數」,模型輸出的「預測變數」則為各品種魚貨當日交易價格;針對資料中仍有缺值的當日資料剔除,並以82的比例分成訓練集和測試集來進行模型訓練。根據預測資料再由演算法判斷最佳配貨組合,經由Line BOT語音機器人與代銷商聯絡其所需魚貨品項、規格及數量,透過機器人流程自動化RPA完成人力精簡及效率提升。 AI智能價格預測系統操作流程 「AI智能價格預測模型」有效提升銷售毛利率,未來商機指日可待 貿易商透過導入AI機器人於企業流程系統後,根據預測資料再由演算法判斷最佳配貨組合,經由Line bot語音機器人與代銷商聯繫,完成配貨決策與資訊傳遞,精簡人力及提升銷售毛利率。 透過Line chatbot語音機器人與代銷商聯繫1 透過Line chatbot語音機器人與代銷商聯繫2 透過Line chatbot語音機器人與代銷商聯繫3 透過Line chatbot語音機器人與代銷商聯繫4

【導入案例】「到府洗衣智慧服務系統」,透過AI會員經營,打造智能化洗衣產業
【109年 應用案例】 「到府洗衣智慧服務系統」,透過AI會員經營,打造智能化洗衣產業

方便又好用的洗衣業者哪裡找 當想送洗衣物至乾洗店時,偏偏電話打不通,無法確認今日是否營業該怎麼辦乾洗店APP下載佔空間又卡卡不好用送洗後衣服有問題卻沒有客戶服務系統,產生客訴無法即時處理怎麼辦 根據行政院主計總處統計,全台洗衣業家數在2019年8月已超過6,000家,如何在眾多洗衣業者中脫穎而出,與眾不同,成為一個重大課題。 客訴管理,危險邊界 國內某乾洗品牌連鎖店,於2015年中推出洗衣APP,主打「到府收送洗衣」,目前該APP已有2萬次下載,會員人數大約6,000人,實際每月約300人次使用,在如此便利的服務下,卻收到許多消費者不好的評論,造成營運無法順利擴張,其面臨之問題及改善需求有以下二點: 1消費者缺乏下載APP的誘因及居高不下的成本: 消費者要使用服務需先下載APP,「如何讓消費者願意下載」是APP服務的最大難關。且因採平價、高品質的理念,運用到府收送的服務流程,物流成本已比同業高出許多,又要在推廣APP上付出行銷費用等,在成本居高不下的狀態下,很難達成永續經營的目標。 2人力不足造成的客戶服務問題: 原APP的客戶服務方式是以電子郵件為主,因人力不足所以無法以電話方式服務,故在回應上無法即時滿足消費者需求,且常造成對消費者問題反應的遺漏,進而造成消費者不滿意的情況。 目前多數客訴問題發生於消費者收到衣物後,發現衣物有缺漏、破損或是洗後色偏等狀況,當客服同仁接受到問題後,會先請工廠調出洗衣袋照片,同時請消費者提供收到的衣物照片兩相比對,若確認此問題並非工廠疏失時,會將工廠所提供之照片傳遞給消費者以釐清問題。此客服流程需花費大量人力及時間才能處理完成,實在欠缺服務效率 完善的AI客服體驗 思言科技股份有限公司與AI團隊切斯特國際有限公司合作,透過數據分析與智能客服打造「智慧線上預約服務系統」,利用系統線上預約洗衣服務到府收送,並打造24小時隨時預約及客服回覆服務。 且智能客服採用最新人工智慧深度學習,自動記錄每一次問答紀錄,具備錯誤矯正的能力,並新增客服表單、推播功能、客服機器人及LINE真人客服等服務管道,大幅提升客戶聯繫及確認的方便性,確實縮短客服處理時間,也提供更即時的服務,並透過數據分析打造自動化的AI會員經營術,有效提高消費者回購率及滿意度。 1對1 LINE線上真人客服 到府洗衣智慧服務系統 降低服務使用門檻,有效提升客戶服務滿意度 乾洗品牌連鎖店之服務原先需下載APP才可使用,在導入AI聊天機器人技術後,已轉換成只要加入LINE便可使用。由於服務入口更換,在試營運期間已明顯感受到消費者使用意願提升,訂單及營業額也同步增加。 未來將擴大推廣,除在網路下關鍵字廣告外,也會在門市請人員進行推廣,並已規劃「舊會員邀新朋友得優惠」之行銷活動。且已將本系統應用至餐飲業,未來將會持續將本系統推廣至其他適合之產業。 乾洗品牌連鎖店已規劃將開立「小型門市」,減少檢查訂單及衣服之人力,並已與取物櫃業者聯繫合作,以期多方服務消費者。

【導入案例】緯霖華岩科技聯手研發以AI預測性維護機台,提升血液透析機使用率
【109年 應用案例】 緯霖X華岩科技聯手研發以AI預測性維護機台,提升血液透析機使用率

台灣洗腎率 世界第一保持洗腎機運作正常是降低風險第一要件 根據美國腎臟登錄系統(USRDS)最新年報公佈全球尿毒症排行,台灣洗腎率是世界第一,2018年急、慢性腎病患者共花掉健保51378億元,國內洗腎人數更衝破9萬人大關 當腎臟無功能時,除了換腎或以透析方式取代腎臟功能,約九成患者選擇血液透析(俗稱「洗腎」)方式;大多患者須每周三次,每次4-5小時至特定醫療場所治療(血液透析中心,俗稱「洗腎中心」,是一種高風險的醫療行為。 病患在洗腎中心進行血液透析期間,如發生異常事件,不僅直接影響病人的醫療安全及治療品質,尚要耗費醫療資源、人力解決或排除。減少血液透析期間的異常事件,為血液透析中心的主要需求。其中最容易發生兩類異常事件,一為透析設備出狀況,二為患者的併發症。在透析設備方面,血液透析機是血液透析過程中最重要的設備,大部分的技術性狀況,多可歸屬於血液透析機問題。 血液透析機結構複雜,潛在風險和安全隱患多 血液透析機的結構複雜、精密,集水路、電路交錯,整合電子、機械、流體力學、光學等精密的體外循環系統;由於工作時間長,易受熱力及化學腐蝕的影響,造成部件磨損,影響整個透析系統的操作性能,潛在的風險和安全隱患較多。 由於血液透析機發生「異常事件」時,不論輕重,均被動叫修處理,不僅患者需轉至備用床位,等待維修停機期間(約2至3天)床位無法使用,床位可用量減少,造成已預約患者調度困擾。 只要血液透析機發生「異常事件」,就是目前血液透析中心最大的擔憂,故提高血液透析機設備使用率為當務之急 以AI預測性維護提升血液透析機使用率 開發作業流程 透過大數據,運用AI預測架構,以主動式「預測維修方式」取代「故障時才維修處理」的被動方式,減少異常事件的發生,提升血液透析機的可用度,期望降低(解決)血液透析機的異常事件,不僅可減少醫療資源、人力及時間耗費,也提高治療品質,保障患者生命安全。 透過AI預測,血液透析機的維護可分為「預測性維護」及「即時故障診斷」兩種 ,其中「預測性維護」是指每日血液透析機暖機時,依照大數據資料及AI預測模型,提供血液透析機的健康狀態,當檢測到設備參數有不健康趨勢時予以警示提醒。而「即時故障診斷」則是指血液透析期間,依據設備實時狀態、相關參數,透過AI預測模型,進行數據分析,判斷設備是否需要預測性維護;當血液透析機有狀況時,即可立即判斷故障因素,並即時排除非重大異常事件。 解決方案圖 以創新服務模式,推廣至全台或亞洲區的血液透析中心 AI預測模型維護能夠降低血液透析期間的異常事件,優化現場資源,提升可用血液透析床數,同時提供患者更進一步的安全保障。對「病患」可減少人為疏失產生的異常事件造成損傷及痛苦;對「醫護同仁」可提升簡易處理異常事件的能力,增加工作滿意度及品質;對「院方」則能提升醫療品質,增加醫療滿意度,節省醫療成本,避免醫療糾紛的產生。 「提高血液透析設備可用度」,對血液透析中心而言非常重要,以AI預測性維護為一創新服務模式,可推廣至全台或亞洲區量多的血液透析中心,也可整合個別血液透析的狀況,包含:後端維修、派工及零件庫存等,規劃雲端服務模式的新營運模式。

【導入案例】「AI智慧辨色及成本最佳化控管系統」,自動辨色,突破傳統調色模式,大幅降低成本、提升良率
【109年 應用案例】 「AI智慧辨色及成本最佳化控管系統」,自動辨色,突破傳統調色模式,大幅降低成本、提升良率!

調配新色彩,只能仰賴老師傅的經驗 漆料產業所謂的「電腦配色」,僅為從「現有色」中挑選再進行配色,若遇到「新色」實則無法調出對應的漆料,皆仰賴老師傅的經驗,因此遇到新色時皆要重頭調配,耗費了許多人力與時間,且每個師傅因調色習慣不同,所配出來的結果雖相同,但成本卻差異很大 傳統塗料工廠面臨轉型的危機三部曲 一、缺乏配色標準規範 一般傳統塗料廠生產新色時,會透過「分光測色儀」量測出樣本色之LAB值後,再由調漆師傅根據過往經驗調配出該色漆料,調配完成後再利用儀器檢測LAB值與C、H波長,而此過程並無完整的系統與資料庫紀錄,亦無一套配色標準規範。 二、生產成本難以控管 塗料廠生產許多不同材質及功能之色料,而漆料成本會隨使用的「色母材質」不同而有所差異,即使母件色號相同,色母使用比例不同,成本也會不同,而調漆師傅在調配漆料時,並無一套配色標準規範,導致難以控管生產成本。 三、調色時程冗長與人員訓練不易 在儀器無法取代人工配色之情況下,調漆師傅的培訓須經過多年調漆配色之經驗累積,並熟稔色彩學,對於色相、飽和度、明亮度皆須有基本瞭解,且在調漆時,若無基本參考配色值,必須花費大量時間反覆調配,造成時間成本損失。 建置「AI智慧辨色及成本最佳化控管系統」 塗料廠透過庫點子文創資訊產業有限公司與朝陽科技大學資工系進行產學合作,結合朝陽科大之AI研究能量,共同開發「AI智慧辨色及成本最佳化控管系統」,建置「漆料色號」及「色母材質成本」資料庫,透過資料探勘方法,分析最佳化配色及最佳化成本配方,調漆師傅可參考系統分析之配方進行配色,調漆完成後再將配方輸入系統,反饋至基本資料庫,利用「類神經網路模型」做系統深度學習,建立調色標準化系統,進行成本管控及資料蒐集,以解決塗料廠目前面臨的困境。 在系統建置前期,由庫點子進行塗料廠系統需求之規劃,並建立系統架構與系統資料庫,而後與朝陽科大共同進行資料探勘、類神經網路應用模型功能建置與導入。 系統建置完成後,由庫點子協助塗料廠進行系統測試及修正,待修正與測試無誤後再導入系統,並進行系統使用教育訓練,確保系統正確使用。 系統畫面示意圖 導入系統前後差異 拓展漆業新市場,看見漆業新榮景 此「AI智慧辨色及成本最佳化控管系統」蒐集調漆師傅之調色配方,建立漆料色母配方資料庫,並紀錄該色號之成本,再藉由深度學習功能,搭配分光測色儀,利用每筆數據,分析出最佳化調色配方,以利塗料廠掌控調漆配色之成本,並藉由系統推薦最佳化調色配方,提高調漆速度,增加產值。 未來可產生之效益包含:因產品良率提高,故可減少客訴、增加顧客滿意度;突破傳統調色模式,優化企業形象;提高調漆效率,並可將剩餘時間投入教育訓練,提升人員專業能力;並可共同拓展漆業新市場與學習新應用技術,推廣至其他塗料業者使用,提升整體產業競爭力,看見漆業新榮景

 【導入案例】「凱比同學機器人」有個AI腦,不再答非所問
【109年 應用案例】 「凱比同學機器人」有個AI腦,不再答非所問!

智慧家庭勢不可擋 近年來「智慧居家裝置」崛起,科技大廠除了推出不同產品之外,也帶動語音助理、聊天機器人Chatbot 、陪伴機器人的熱潮,而「語音購物」市場將成為零售業下一個潮流。根據調研機構Juniper Research調查也顯示,到了2023年基於聊天機器人的交易市場規模,將從2018年的73億美元激增至1,120億美元 國內某知名家用機器人製造服務商,提供自行開發設計的教育與陪伴服務機器人,「凱比同學機器人」為其主力產品,但因跟使用者的語音對話能力仍有不足,當消費者覺得機器人不夠聰明,就容易玩膩而被棄置在一旁,長期也會影響其他消費者購買意願。 Hello凱比同學,你聽得懂我在說什麼嗎 經過調查發現,很多凱比同學機器人用戶特別喜歡跟機器人對話或聊天,聊天範圍很廣,但語音聊天對話若單純使用Google或Microsoft雲端平台開發,開發成本不低,用戶使用語音對話服務時,Google是以服務量計價,系統運營成本高,且運營成本是動態變動的,因此對於系統成本管控造成很大困擾。 另一方面,家用機器人製造服務商因已投入大量資源發展凱比同學機器人硬體、軟體、數位內容等服務,自行再開發自然語言對話及語意理解技術,也必須耗費大量人力且速度慢。因資源有限,希望尋求第三方解決方案以提升機器人對話服務的能力與開發效率。 網際智慧自主研發之iboai語音助理對話大腦平台與凱比同學整合 從「對牛彈琴」到「我知道你很難過」的轉變關鍵 網際智慧股份有限公司為台灣知名的人工智慧自然語言理解技術服務公司,產品包含自然輸入法、TTS語音引擎、iboai語音助理對話大腦平台。其中iboai語音助理對話大腦平台,已經應用於智慧音箱、火車高鐵語音助理App,甚至企業用的中華航空公司的員工優待機票系統等。機器人製造服務商發現iboai語音助理對話大腦平台可以很快的補上機器人製造服務商自有AI服務對話技能發展速度的不足,增加更多的對話內容與技能,提供上下文關聯對話服務,使凱比同學在短時間內讓用戶有感變聰明。 服務架構 本案也進一步應用中央研究院資訊研究所最新Principle-based原則導向之語意理解引擎技術,達到深度自然語言處理及理解,並對其進行意圖與實體分析,生成互動對話邏輯,進行連續對話。所以也補強凱比同學機器人基礎社交溝通能力、增強AI對話技能數量,也從原先凱比同學機器人對話只能一問一答回覆就結束,進階為具備「多輪對話」與「上下文關聯對話」的能力,使機器人對答更人性化。同時,凱比同學機器人的開發時間上減少了許多,明顯且有效地大幅降低並控制雲端服務維護管理成本。 服務架構1 AI凱比成為你無所不在的好夥伴 目前市面上眾多的機器人與智慧音箱等語音助理,大都僅能提供一問一答即結束的對話服務,本案採用之iboai語音助理對話大腦平台最大的差異是具備「上下文關聯理解的多輪對話互動」能力,也是台灣唯一能支援在本地端或雲端服務的AI語音助理對話大腦平台。 iboai語音助理對話大腦平台也是支援Level 3Level 5最高等級的對話技能模版數量最多的平台(請參考httpswwwiboaiai-level),可以支援生活類(基礎社交、天氣、新聞、股價)、交通類(台鐵、高鐵、航班)、行銷客服類(FAQ回答、提升購買率)、企業管理類(預約時間、訂會議室、請假考勤、資料查詢)、電商類(出貨進度、退換貨)、IoT控制類等等,透過AI技能模版可以支援大量的企業服務應用,讓企業在短時間設計專屬的語音助理或AI Chatbot為顧客服務,可以應用到LINE, Facebook Messenger、網站、App、IoT裝置等。 本案iboai語音助理對話大腦平台採取iboai inside策略,強調自己的定位是Enabler,協助企業服務升級AI,希望也能幫助現有Chatbot廠商、App開發商、商用軟體商、資訊硬體商、系統整合商、IoT設備商,升級原有的產品與服務具備人工智慧自然語言理解對話的能力,一起為廣大企業提供新一代的人工智慧AI智能機器人服務。

【導入案例】AI加值「香蕉契約合作管理作業系統」,有效提升香蕉外銷產值
【109年 應用案例】 AI加值「香蕉契約合作管理作業系統」,有效提升香蕉外銷產值!

香蕉產業面臨外國低價衝擊 我國香蕉產業近年來受到菲律賓與厄瓜多低價衝擊,銷日數量逐年下滑,已不復當年台灣香蕉外銷日本之黃金時期。 香蕉價格組成之結構,在青蕉階段各國差異不大,投入之肥料與所收穫之重量各國都無明顯差距。但國際香蕉報價,菲律賓一箱約在美金11元,但台灣香蕉每箱則多在美金22元左右。究其原因,乃在於香蕉採收後之「集貨場規模投入資本與產出」之效率,國內農地破碎而零散,因而大幅度拉高了後期商品的成本,也因而限制了外銷的出口動能。 此外,氣候變遷對於我國舊有外銷香蕉之南部產地也造成影響。冬天不冷,夏季降雨週期改變,導致產出之香蕉生理特性受到影響,果徑急遽增大超過外銷規格,造成集貨場處理時每單位的合格品成本增加;或是含水量過多導致口感失去歷史味道,造成市場願意購買的價錢下滑,在成本上升與售價下降的壓力下,更相對的擠壓了台灣香蕉的商品價值與生存。 種植環境差異性無法維持香蕉外銷品質的穩定度 雲林縣某鄉果菜生產合作社,原為國內內銷香蕉之集貨場,所在田區位於雲林縣,該區原本並非台灣外銷香蕉之產區,自2017年,台農發股份有限公司在進行田間調查時,意外發現雲林縣所產之香蕉品質與南部地區相比較為穩定,農民組織也更為緊密,能夠利用水稻田與香蕉田輪作之方式減少黃葉病發生,有效維持產量。 香蕉出口 然而雲林縣的果菜生產合作社並無外銷經驗,因此台農發逐步導入日本相關品規,與農民議定出貨之果指大小、果徑寬度、果軸切口與裝箱方式等。期能逐步建立起我國在中部地區的香蕉外銷中心,然而雲林產區的氣候因素與南部截然不同。目前我國外銷香蕉的相關經驗,多是按照高雄與屏東之經驗來訂立,並無考慮到產區北移後,氣候對於香蕉生長之影響,因此目前集貨場在處理規格品的時候,淘汰的部分仍多,間或造成農民爭議。 農業風險控管數據服務,發展香蕉品規量能波動預測模式 台農發股份有限公司既有之集貨場對契作香蕉農戶包裝分類品檢機制,收集之數據資料與悠由數據應用股份有限公司配合,運用資料科學研究方法,透過研究規劃、資料蒐集擷取、資料清洗、特徵萃取、資料融合、資料分析演算法建立、分析結果、模板開發、專家會議討論等步驟建立分析應用流程。 以「集貨場對香蕉契作戶包裝既有分類品規數據」為核心,將相關數據包含:集貨場每批進貨之貨櫃編號、產地、香蕉數量、每箱果把以及果指數據、瑕疵品抽驗紀錄及內部收購價格與各採購商價格等,透過香蕉契約合作管理作業系統,介接資料決策分析系統及API,提供果菜生產合作社上述分析數據,以利進行後續判斷。 悠由數據擷取與蒐集香蕉契作戶產地之歷年氣象環境資料、公開批發市場的產地價格及香蕉生理模式等數據,結合台農發的分類品規數據,建立「香蕉品規量能波動預測」演算機制,並將分析預測結果回饋至香蕉契約合作作業管理機制。 視覺化採收時程分析 藉由香蕉不同品規量能波動預測分析結果,提供集貨場作為提早預警及市場風險控管之決策參考,並進一步對通路端進行供貨調節,解決集貨場收購所面臨的產能與品規不穩定的問題。 果菜合作社X台農發X悠由數據應用緊密合作,創造三贏 本次成功將產地與台農發和悠由數據三者結成緊密之合作關係。農民以往對於貿易商常有猜疑,貿易商對於農民亦無掌控力,產地往往發生對立的情況,因此未能針對品質進行循環性的改進。這次的結盟,能夠讓通路端的要求,對照產地實際出貨的品規波動,並且用數字化的方式呈現,讓農民也能夠對自己的出貨品質有客觀的認知,進而願意換位思考理解貿易商的難處而進行配合。 香蕉契作管理創新模式 台農發與悠由數據的香蕉契作管理系統,能夠提供一個平台,讓作物的生理結合氣候預測而得到預判資料,對於台農發經營之其他品項,如:鳳梨、美生菜、紅蘿蔔、鳳梨釋迦等,都具有極大的啟發。 未來只要輔導農民參與產銷履歷系統,即能透過地籍資料對接到本契作系統中,有助於產銷履歷制度推行。此系統未來台農發也考慮進行商業化購置。

【導入案例】【文鼎木刻思打造AI造字助手】傳統鑄字行文化傳承現曙光
【109年 應用案例】 文鼎X木刻思 打造AI造字助手 傳統鑄字行文化傳承現曙光

全台僅存的鑄字行文化傳承曝危機 國內某傳統鑄字行為台灣僅剩一家「仍在營運」的鑄字行,有種使命感,希望把台灣長久以來美麗的鉛字活版技術,長久傳承下去。但即使想要繼續鑄字,現存的模具已經歷超過40年反覆鑄造,用來鑄鉛字的「銅模」紛紛損毀。店中高聳的鉛字牆,正面臨時間侵蝕的困境。 每一枚「銅模」可以用來生產一萬枚鉛字,因此被稱為「鉛字之母」。如果銅模的字跡模糊,鑄出來的鉛字也會模糊,印刷之後就會出現部首殘缺、筆劃參差的現象。 在台灣5070年代,用來鑄字的「正楷」銅模,負擔傳播文明的重要責任。 正因銅模崩毀狀況嚴重,鑄字行老闆於2008年發起「字體銅模修復計畫」,與一群熱情參與的志工,首先進行「正楷」銅模字體的修復。三年中各種討論、工坊如火如荼,每週不間斷地討論,似乎銅模復刻之日即在眼前。然而這樂觀的前景,卻發生了意想不到的危機,最終被迫暫停,因為每個人修復的字個性迥異,雖然優美,看起來卻不像是同一套字型helliphellip 銅模字體修復師的「共性」養成不易 曠日廢時的「字體銅模修復計畫」 經歷2008年的失敗,對鑄字行是巨大打擊,因為不能採用這批字型,而覺有愧於志工們的熱情付出且最重要的銅模仍持續損毀中,尤其是店內最具價值的「正楷」銅模,每多鑄一個字、就又破損一點,讓日星焦急不已 銅模損壞從「缺角」開始,逐漸碎裂,終至崩壞 為了趕在銅模完全損毀之前至少保存「字體現貌」,鑄字行於2016年重啟修復計畫在幾位重要志工和Justfont字型團隊的協助下,先將受損最嚴重的「正楷」初號鉛字、部分「宋體」一、二號鉛字先行掃描、保存,待資源到位時,可將「掃描圖檔」轉換「字型檔」,再以電腦進行精修。之後由60歲的老闆一人,緩慢地以一天5個字的速度,修復日星12萬餘枚字型。 有鑑於人力修復的腳步遠遠比不上銅模磨損的速度,鑄字行透過更嚴謹的測試徵選,把3至4位有志長期協助修復的人才聚集起來。除重新進行字型教育訓練之外,也增加「書法」課程培訓。最重要的,為了養成修字的統一標準,這幾位修復師必須接連數月、數年的同步修字,並且每天就修字成果進行檢討,以便減低誤差,趨於一致。期望讓3位修復師一起工作,每天5個字進行長期修復;加上前置訓練,25年內將有望為繁體漢字重建完整的「正楷」4500字初號字型helliphellip 算算看一位修字師傅,需要幾個日子,才能把所有字修完 文鼎科技神助攻,打造AI造字助手 文鼎透過全球領先的漢字造字技術和工具來協助鑄字行,更透過工業局的AI智慧應用服務發展環境推動計畫促成資服業者AI加值轉型計畫,與AI新創獲獎廠商木刻思合作,研發融入AI技術,提升造字生產力,達到縮短開發時間與降低成本的目的。 文鼎從早期每個字都要字型設計師一筆一畫從頭開始造,進化到可以利用既有的字根組字,預組出完整的字。但此初步預組的字,可能筆畫重疊厲害,空間與粗細不佳,還需要設計師花許多時間調修,才能產出可用的字型產品。而透過AI加值模組後,系統可學習設計師部分已調修過的字型風格,自動調整剩餘字的架構、筆劃粗細等,最後再由設計師花較少的時間來確認品質與小幅修改,即能完成可用的字型產品,大幅降造字的時間成本。 導入文鼎加值AI造字系統流程-2之1(導入AI工程技術) 文鼎科技以全球字型、跨平台字型技術服務為核心,提供全球各大製造商、系統商、政府單位各種字型解決方案,以過去開發新字體為例,完成一套萬字的字型需耗時一整年,經濟部工業局輔導文鼎科技與AI新創公司木刻思合作,透過AI學習字型風格,只需完成5,000字,即可自動生成其他5,000個未造字型,再進行品質確認與調修,讓設計師花更少時間便能完成整套字體,大幅提升5成工作效率未來亦將持續優化造字模組,讓AI完成9成以上字型設計,加速新創字型生產速度。 導入文鼎加值AI造字系統流程-2之2(導入文鼎造字平台) 文鼎科技字型創新受到各界採用,如第30屆金曲獎運用字型進行舞台視覺設計、蔡英文總統競選團隊也採用平台字型做為總統大選文宣,於2019年透過AI加值轉變營運模式,首年創造1,500萬元營收,預計5年內提升營收至1億8千萬元以上。 智慧字型設計服務平台 以AI輔助造字降低字型設計門檻,未來可以轉化為「智慧字型設計服務平台」,提供設計師自創字型,也可服務企業字型設計,幫助設計師達到原本無法以個人完成的整套字型開發,也能在專業的造字領域,達成設計與開發的分工,並成為字型代工成功的第一步,對於字型的設計和應用將有重大影響。 且透過AI加值的iFontCloud文鼎雲字庫改變了原本的營運模式,從僅限於文鼎科技內部設計師進行字型設計,打破原有客群限制,與外部設計師進行合作,建立並活絡造字產業圈內的生態系。 AI加值造字流程產出的字型產品:文鼎雲端平台字庫管理工具 文鼎科技吳福生總經理表示:工業局輔導參與AI加值計畫的實證成效,自2019年起每年持續投入600萬,至2023年累計投入3,000萬於AI技術研發,文鼎規劃下一階段將轉化為「智慧字型設計服務平台」,把iFontCloud文鼎雲字庫開放給所有熱愛文字的民眾,每個人都可以透過平台創造個人風格字型,並可應用在各領域,預計將創造更大商機。 iFontCloud-AI加值造字流程產出的字型產品,在文鼎雲端平台上銷售

這是一張圖片。 This is a picture.
【109年 應用案例】 運用深度學習的AI檢測系統,只要0.5秒就能對不規則多邊形體瑕疵做出檢測!

傳統製造業採人工目視檢測產品,品質良率缺乏穩定性 傳統製造業所生產的產品,「品質良率的優劣」是至關重要的議題,也是客戶業務要求的決定因素。近年來雖已有許多AOI視覺檢測輔助系統,但在自動化導入檢測系統時,仍有多項限制條件無法克服。 例如:少量多樣的產品外觀、無法標準化的不規則多邊形產品尺寸、因光線不同角度暈射之玻璃或金屬產品等,不易以AOI視覺檢測來輔助產品良率的過濾,所以仍有許多傳統製造業採用人工目視檢測產品的品管流水線。 人工檢測耗力耗時,國外解決方案昂貴 國內某模型新創製作公司,因常有客製化少量多樣的產品需要製造,雖有國外進口百萬級模具設備,但在產品外觀品質檢測的部份仍多用人工目視檢測,每位員工的測試標準不一,且為了正確完整的檢視產品的外觀,每個人所花費檢視的時間也不容易控制,往往同一個產品需要反覆檢視才能確保品質標準之要求,相當耗力耗時,也易受外界環境影響。 模型公司雖曾評估擬改採國外的AOI視覺檢測設備,但一組設備的價格不菲,又只能檢測部份型式的產品參數,且無學習功能以達到多樣化檢測的目標,故仍只能被動維持原方案helliphellip 客製化解決方案,大幅提升檢測效率與節省人工成本 為了降低人工作業的誤判率及操作成本,進而提升公司產品競爭力,模型公司尋求五百戶科技有限公司協助,期望透過客製服務,以Deep Learning人工智慧技術導入,改善傳統AOI視覺檢測系統的缺點,增加可用視覺檢測系統之產品面向種類,更精準地提升視覺檢測產品的準確性。 五百戶科技在國立中央大學創新AI研究中心的協助下,依據模型公司提供的五種瑕疵條件定義,如:刮痕、毛屑、白斑、損傷破裂與烤漆不均勻等狀態,先蒐集訓練集資料,再手動加工複製瑕疵條件到產品的其他位置與角度,再接著運用程式產生不同角度、光線變化下的瑕疵圖檔,並進行瑕疵標記。 並使用不同演算法所需的訓練集程式方法,如:VGG、RestNet、Inception、DenseNet、Xception、SqueezeNet、對目標的遷徙學習、分類問題Faster_Rcnn、SSD、Yolo、Mask_Rcnn等物件辨識演算法後,經過精確率與速度的綜合考量下,進而選擇了SSD作為主要核心測試檢驗用的演算法。 再產出該演算法所需要之訓練集格式內容,做為比對模型使用;繼而使用不同的AI框架,如:tensorflow、keras等,都做了實際的驗證測試,並產出驗證測試報告,最後調整出每種產品檢驗時的最佳應用參數,確保檢測準確率達平均95,檢測時間也由5秒減低至平均05秒。 模型公司原製作流程僅於人工檢測完成後,批次加蓋QC合格印章,或挑出有瑕疵之產品。導入此檢測系統後,原流程不變,但加速了人工判斷的時間,並且在過程中錄影存檔作紀錄,若有瑕疵品便會出現紅色警示並記錄成照片,該件商品即被排入瑕疵待檢區,人工檢測後若為合格品即可往下檢測下一產品,大幅提升檢測效率與節省人工成本 低成本、高效能的AI檢測新選擇 以機器取代人力的視覺檢測技術,在少量多樣訂單生產、急單和勞動人口短缺情況下,扮演越來越重要的角色。相對國外昂貴的檢測方案,國內能提供相對便宜且客製化之方案,無論是購置成本或檢測效能,都吸引更多業者躍躍欲試,將能有效提升製造業者生產品質之良率,進而提升競爭力。

筆資訊
總筆數:69, 共8頁