精選案例

27
2021.9
【110年 應用案例】 無人智慧販賣機 黑沃咖啡一分鐘打造精品咖啡

科技也能飄著咖啡香 位於台中市南區高工路上的「黑沃咖啡」創始店,28坪的空間,飄散著文創與科技交融的咖啡香。2016年10月成立的黑沃咖啡,迄今在全台擁有7家直營店及28家加盟店,在全台已有15萬家店在賣咖啡的情況下,黑沃咖啡異軍突起的秘訣在於:運用AI科技,打造無人智慧販賣機,1分鐘煮出精美香醇的迷人咖啡。 黑沃咖啡實體店營造文創時尚氛圍圖:黑沃咖啡官網 根據國際咖啡組織(ICO)調查,台灣人一年喝掉285億杯咖啡,市場規模超過700億元;而業者星巴克調查,2018年台灣咖啡整體市場達720億元,2020年已上看900億元。近5年,台灣咖啡市場以每年約20的成長率擴展,成長潛力驚人。 咖啡需求商機驚人 每年以20速度成長 在咖啡已成為台灣人時尚消費象徵的現在,除了星巴克、路易莎等一級品牌咖啡店外,還有7-11、全家便利商店,及在街頭巷弄一家家的精品咖啡館。如何吸引消費者的目光,在淪為「紅海市場」的咖啡市場中異軍突起,就有賴彈性與創意,了解消費者的需求與口味,更是培養品牌忠誠度的不二法門。 除了實體店面外,黑沃咖啡也積極發展虛擬通路,其電商平台除了官網,還有 PChome、momo及團購主等通路, 通路多元,業績也穩定成長。 即便如此,黑沃咖啡創辦人林佩霓仍不斷求新求變,在成立前三年,由於與加盟門市的關係處理往往處於被動分散狀況,難以主動掌握市場動向,與消費者溝通的節奏及品牌跟進消費者的速度存在著一定的落差,較難以培養品牌的忠誠擁護者。 職人精品咖啡深受消費者喜愛。圖:黑沃咖啡官網 透過AI鷹眼系統爬蒐商情 市調成本大幅下降 為解決無法快速掌握市場風向與市調成本高昂的兩大痛點,黑沃咖非在2020年導入AI鷹眼系統爬搜市場商情,透過在社群網站、新聞、論壇等社群媒體全方位爬蒐各式文章,自動貼標,合適篩選,從網站每篇以5個關鍵字計算,爬蒐4,858篇文章,相當於24,290個關鍵字,所花費的成本不多,可以精準掌握到消費者的口味與偏好。 同時,在新品推出之後,不僅可即時通知加盟店,更可以透過社群了解消費者的接受程度,作為是否大力推廣的參考依據。 透過數據的蒐集,及透過AI演算法的分析,選出消費者最喜歡的口味,可以降低新品推出的風險,提升新品成功率,因此,黑沃咖非在2021年大膽開拓新市場,推出全球首創AIoT智慧咖啡創新概念,與全聯合作首間「智慧超市」合作,結合黑沃咖啡打造無人智能手沖咖啡機,讓消費者也能享受獨一無二的好風味。 洞悉消費者口味 打造AIoT無人智慧販賣機 台灣第一家全聯內湖瑞光「智慧超市」就位於台北軟體重鎮內湖區內,推出全球首創AIoT智慧咖啡概念店,可以透過手機App連動AI智慧咖啡販賣機、AI手沖咖啡機、AI真空冷萃機,一次滿足三種咖啡科技體驗,自助區部分設有黑沃咖啡AI智慧咖啡販賣機,不僅支援多種無現金支付方式,還是全台唯一以冷藏牛乳製成奶泡的無人智慧咖啡販賣機,嚴選黑沃5A級牛乳,從付款、研磨現煮、到出杯,只需1分鐘時間。 台灣第一家全聯「智慧超市」於台北市內湖區瑞光路成立。圖:全聯FB粉絲頁 全聯智慧超市設置AI智慧咖啡販賣機,使用APP操作就能享用香醇咖啡。圖:全聯FB粉絲頁 現在,加上AI科技元素之後,喝咖啡不只是純喝咖啡,也為消費者帶來更多全新的科技體驗與便利。

2021-09-27
【110年 應用案例】 海量數位工程AOI機器智能手臂檢測系統 大幅提高瑕疵檢測精準度

臺灣堪稱製造業大國,然而,在產線上,品質瑕疵檢測一直是製造業長期痛點,雖然有AOI設備可輔助,但大多採用固定式機器,受限於角度,診斷不夠精準,誤判率也高。海量數位工程公司導入AOI機器智能手臂檢測系統,可有效降低誤判率,提高瑕疵檢測精準度。 一般來說,產品的良率攸關企業的成本與客戶的退貨率,而製造產業品質瑕疵的檢測流程,往往需要編制大量的品質檢測人力。目前製造業檢測工具雖然有AOI設備來輔助進行,但這些設備多半採用固定式的檢測機器,固定式相機容易受限於角度,導致診斷不夠精準,誤判率太高等缺點,因此,人員在後端需要再次篩選檢驗,也就是複檢,通常人工目測檢視的瑕疵漏檢率平均在5上,甚至可高達20。 製造業品質檢測三大痛點 機器手臂AOI之動態多角度品檢協助解決 根據海量數位工程實際了解製造業在檢測產品品質有三大痛點: 痛點一、人力檢測產品品質出錯率高 目前製造業多以人力來檢測產品外觀,但人工判斷多半有誤差,例如:表面刮傷、色差、焊道外觀hellip等,瑕疵判斷出錯率高,且須待成品階段才能一次性檢驗,時常出貨前全檢後依然遭整批退件,導致重製及人力成本大增。 痛點二、品質檢測之數據無法量化與記錄 傳統人力檢測無法保留檢測數據,嗣後發生品質糾紛時,責任難以釐清。而海外品牌高階代工單往往要求溯源與相對應的缺點紀錄,傳統產業原有之人力檢測難以符合更高階代工單之要求。 痛點三、傳統AOI視覺檢測的限制 現有製造業常用的AOI視覺檢測系統,因為視覺軟體技術的限制,都是以固定相機、固定光源及單一角度的方式來進行,這種方式對於平面或形狀由直線組成之產品例如:長方體或正方體的單一檢測點尚可處理,但對於複雜形狀的產品例如:汽車零件多為不規則狀多點、多幅度的檢測,就較難實現。 海量數位工程研發AOI機器智能手臂檢測系統,有效提高瑕疵檢測精準度。 為解決製造業在品質檢測的痛點,海量數位工程決定從研發多角度、可移動式的檢測儀器開始發想,從結合工廠自動化領域中的兩大代表性技術-機器手臂與機器視覺著手。海量數位工程以機器手臂結合AOI之動態多角度AI視覺即時品質檢測方式,改善固定式檢測受限多角度的問題,視覺檢測技術的提升與結合人工智慧,進一步相機取得的影像資訊可由平面取樣提升至多角度、多維度取樣。 選定汽車產業做為實證場域 可快速回應顧客需求 AOI機器智能手臂檢測系統,所運用的AI技術包括無監督學習(unsupervised)、監督式學習Supervised learning、半監督式學習Semi-supervised Learing,使業者在初期樣本不齊全,或是沒有不良樣本的情況下也能使用無監督深度學習技術學習良品,並應用在汽車三角架自動焊接的視覺檢測上。可解決導入前受限於固定式機器的角度、診斷不夠精準、誤判率高的問題。 汽車零組件單價較高,會要求更嚴格的瑕疵檢測正確率。 在導入AI服務的產業中,選定汽車製造業作為實證場域。海量數位工程表示,汽車製造業主要為相關零組件製造商,而且通常元件單價較高,需更多品質檢測品質及良率,會要求更嚴格的正確率,因此選定汽車業做為導入的場域。 機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統,除了可以改善汽車零組件檢測瑕疵品質失誤率外,因為以多角度的機器手臂AOI服務來提升定點式AOI光學檢測,可以符合多數產業之量測需求;最後是建立第三方系統平台,建置共同工作整合平台監測系統,以便在問題發生時,第一時間接收訊息並著手處理。 本系統可針對出廠產品之重要數據進行記錄儲存,為實現未來數位生產線與虛擬生產之基礎。同時於瑕疵發生時,可即時串接海量MES監控系統,迅速反應至相關製造決策部門,嗣後並利用ERP系統進行專案管理與檢討,有效精進其生產效率,降低生產成本。 有助降低溝通成本 期許成為行業標配 就產業上下游整合而言,可以為上下游之數據連貫提供一基礎之標準,降低供應鏈之溝通成本,經由指標代工廠與品牌商的認證,有機會成為該產業之行業標準配置。 透過此一計畫的產出數據資料庫建置,業者進一步透過大數據分析Data Analysis,優化供應鏈管理的解決方案「供應鏈規畫Supply Chain Planning, SCP」,依據數據,建立預測計畫,並運用科技串連供應鏈上下游的數據,精準控制產品品質。未來對接歐美、日,需要品質精細訂單,業者能更快速回應及整合產業供應鏈Supply Chain 。 最後期望透過標竿示範產業之場域驗證,例如:以汽車零組件製造產業標竿示範場域,透過機器手臂結合AI之動態多角度AOI視覺即時品質檢測系統計畫進行驗證,讓汽車代工廠與汽車原廠之間有更優化的供應鏈聯繫,並成為該行業標準。更進一步尋求更多的AI團隊,加入場域協作平台跨產業之開發,帶動整體AI新創與場域結合的生態系。 海量數位工程研發的自走車

2021-11-03
【110年 應用案例】 赫銳特科技VCSEL封裝元件瑕疵導入AOI檢測 提升產能效率20%

2017年,iPhone X的亮相讓提供 Face ID人臉解鎖的3D感測技術成為大熱門,也帶動了3D感測模組中的核心零元件VCSEL的發展。而VCSEL封裝元件入料瑕疵檢測,若透過AI推論模型可解決良率偏低產業難題,提升可靠度達95。 VCSEL技術現階段可被運用於諸多用途和各類終端消費市場,包括機器人、移動設備、監控、無人機,以及ARVR等。VCSEL在需求高速調製功能的應用(例如照相機和生物計量)中堪稱為不錯的解決方案。 VCSEL技術應用層面廣,也可應用於無人機。圖為佐翼科技農用無人機 VCSEL技術應用層面廣 AI技術助攻瑕疵檢測 赫銳特科技表示,VCSEL封裝元件市場也面臨到商業對手強力的削價競爭,需要進一步降低成本提升、產品競爭力,其中一個關鍵的難題就是將玻璃透鏡更換為環氧樹脂型透鏡。傳統玻璃透鏡的生產良率高,但成本較環氧樹脂透鏡高,因環氧樹脂經切割製程,側壁切割道上容易會有毛邊,造成尺寸過大,容易在打件時因為受熱而產生的應力釋放,將會直接導致光學透鏡破裂。 赫銳特科技指出,VCSEL環氧樹脂透鏡的入料檢測十分重要,在封裝空間的限制下,封裝與光學透鏡貼合的空間有限,且此光學透鏡會被侷限於一金屬框架內,若是沒有控管好尺寸公差,很容易在打件時因為受熱而產生的應力釋放會直接導致光學透鏡破裂,造成VCSEL封裝可靠度驗證良率損失最高達到10,造成生產成本增加。 為解決上述問題,赫銳特科技希望在VCSEL環氧樹脂透鏡的入料階段,可以藉由AI影像監控環氧樹脂元件的尺寸及外觀瑕疵,確認其尺寸是否合乎規格、切割邊緣是否平整、外觀是否瑕疵等。由於傳統的入料檢測,經通過大略的人眼目檢分辨好壞,為順利收集影像數據,首先需要解決影像蒐集的問題。 因此,赫銳特科技首先建立自動光學檢測裝置Automated Optical Inspection,AOI,自動光學檢測裝置包含X、Y、Z三軸動及高解析相機,及相關控制軟體自動記錄影像。蒐集完成後的影像資料,經opencv將測試影像Test與一標準正常影像Normal,進行影像對位後取出Test與Normal影像的差異部分,並可經由Pixel Mapping計算影像的像素面積進行比較完成初步篩檢。 承上之影像分類,進行手動標籤標示包含:正常、外觀瑕疵或形狀特徵差異之樣品,後進行演算法訓練與驗證,使用深度殘差網絡Residual neural network ResNet或其他相關演算法進行深度學習,以辨識出透鏡的優劣情形。 導入AOI檢測 提升產能效率達20以上 比較導入AI影像檢測的前後差異,導入前的VCSEL入料透鏡檢測,僅透過簡易的人工外觀檢測,將透鏡封裝在已固晶的VCSEL封裝體上,通過一般點亮檢測後,最後進行可靠度測試高溫回焊,失效樣品進再入重工流程。 但在導入AOI檢測之後,可提前將有問題的透鏡篩選出來,除了可以降低後續物料投入的成本,亦可減少失效情形降低重工的需要,因而提升可靠度驗證良率達95以上,預期可協助場域業者降低生產成本達10,提高產能效率達20以上。 導入AI影像檢測的前後之差異 赫銳特科技指出,這項技術是基於微小影像開發的AI應用技術,透過深度學習演算法辨識影像瑕疵,用來辨識瑕疵影像。而訓練後的網路來自動分類對應於預定類別的影像數據。透過參考影像就能辨識缺陷類別,因此不再需要繁瑣的編程。 而在工業機器視覺環境中,深度學習主要用於應用中的分類任務,例如在工業產品的檢驗或零件的辨識,未來隨著IOT穿戴裝置的發展,符合節能省電的潮流議題,光電元件尺寸將不斷的縮小,本技術未來也可應用在其他微小光電元件的外觀瑕疵檢測。

2021-12-05
【109年 應用案例】 從一顆包子窺看如何應用AI減少50%報廢率,為冷凍食品提升60%生產效能

從產線到餐桌,吃進去的衛生管理由誰把關 近幾年有關食品安全新聞報導層出不窮,如即期品改標、洪瑞珍食物中毒等事件,不難發現民眾對於吃進去的食品衛生愈發重視,但由於各個食品加工的品管方式不同,容易有潛在風險。 世界衛生組織(WHO)就曾指出,不安全的食物與飲水,每年會造成200萬人的身體損傷,也因此國際市場要求食品加工企業必須建立商品可追溯體系,所以國內食品加工大廠也想建立生產追溯系統,期望能儘速反向溯源到問題原物料,並啟動追回和銷毀問題食品。 看得見的安心,落實生產透明化 國內某食品大廠以生冷凍食品、即時料理等商品,國外市場版圖已擴展至北美、紐澳、日本hellip等國,在國內對於食品管理的推動也是不落人後,現已取得HACCP、ISO22000、ISO14001等食品認證。 食品生產在人力需求較高,因此也容易有工作疲勞而影響品質,再加上生產線對於生產數量、流程與時間點紀錄不明確,在出現不良品時難以追溯生產資訊,造成食品安全管理上的漏洞只得整批報廢。 為此,中山大學產發中心應用自身的輔導資源,協助該食品大廠解決食安管理的問題,規劃運用AI技術蒐取生產數據,同時建立食品生產的防弊與回溯。 製程智慧化助力食品安全 烘焙類的食品加工雖自動化程度不高,但本案之食品廠對於提升產線自動化程度、導入智慧製造方面有意願,對於企業來說,溯源體制不僅能樹立品牌形象,提升產品、品牌價值,對於消費者而言,生產線的透明化讓人更加放心。 因此,中山產發中心媒合AI技術服務商泓格科技,在第一階段規劃導入數據蒐集設備來串聯食品工單資訊,降低人為操作上的資料疏漏,同時透過即時生產資訊看板掌握產線處理流程,確保可能因人為因素造成的生產階段資訊不連貫,使該批產能受到影響。 產線智慧化規劃示意圖 第二階段則於麵糰發酵階段透過深度學習進行大小與體積計算,分析溫度、濕度、發酵時間與產品體積比間的變化關係,並評估後續是否導入AOI異物偵測,於冷凍後建立第二道品管步驟。 成品品管AI化示意圖 食品加工身分證,開啟食安溯源AI時代 在台灣,消費者對生產履歷的認知度和接受度逐步提升,食物由原料供應、加工生產,到流通販賣,都需要能完全掌控,並提供透明資訊,公開食品生產履歷不僅是增加企業與消費者間的信任,同時也是讓台灣的食品安全環境,跟上國際的腳步。 中山大學產發中心將在2020年協助企業導入先進科技的AI應用,記錄原物料從產業到餐桌的全流程數據,監督食品生產過程,成功落實產品溯源,做到加工食品的防弊與回溯,從而對產品建立高規格要求,讓食品加工產品走進世界級的標準。

2020-03-12

應用案例總覽

【導入案例】「AI罐頭封膜檢測系統」,提升產品出貨良率,為食安把
【109年 應用案例】 AI罐頭封膜檢測系統 提升產品出貨良率,為食安把關

傳統製造業品管靠目測,品質、商譽皆受損 據IDC(國際數據公司International Data Corporation, IDC)研究,台灣製造業在2018年有25的業者導入人工智慧。主要著重在兩個需求,一是品質檢測,二是設備的預知保養。 然而在許多傳統製造產業當中,工廠產線的成品檢測流程仍由人工負責。人工作業的問題在於往往會因工時長、人眼疲勞而導致品質參差不一,或是肉眼無法挑出細微的瑕疵,而可能因不良品出貨而產生賠償損失與商譽受損。 封膜不良影響甚鉅 國內某椰果產品製造商,在椰果產品製程中,產品封膜完整性是由人工抽樣檢查,但因人力資源安排與產線速度不慢這二個因素,目前抽檢覆蓋率為25。封膜不良的產品一旦出貨,不但造成單罐產品損害,也將影響同箱產品、運輸工具汙損,並招致蚊蠅,對整體造成危害,影響商譽。另外,因產品為高濃縮加工食品,封膜不良若無檢查出來,出貨後,買家也未檢測,將可能造成食安風暴,影響甚鉅 因此導入「AI品管檢測方案」,除了提高檢測覆蓋率,也期望透過AI系統可準確挑出封膜不良產品,減少不良品出貨的機會與後續可能產生之食安問題。 智慧封膜良率檢測,全面覆檢 封膜辨識系統示意圖 由零次方科技有限公司貢獻影像類AI系統之Know-How,搭配巨鷗科技股份有限公司的系統整合能力,共同開發「智慧型工廠封膜良率檢測系統」,整合並導入椰果製造商之產品製程中,提高產品封膜檢測涵蓋率。 在AI能量加值前,原產線生產100箱(約600罐),良率在95前提下,約有30罐不良品,但因檢測覆蓋率僅25,因此僅檢測出1罐不良品;然在加值AI檢測後,檢測覆蓋率提升為96,可檢測出約28罐不良品,大大提升不良品之檢出率,進而降低未來可能產生之損失。 不論以Add-On方式導入或Build-In模式加值,均可為產業提供解決方案 檢測服務流程示意圖 此封膜檢測系統服務框架,未來將可以Add-On方式導入至其他類似檢測類製程之品管檢測環節,例如:整合進飲料工廠封膜、其他罐裝產品封膜產線流程,亦可與封膜機硬體製造設備商做軟、硬體整合,以Build-In模式加值封膜機,提供產業完整性解決方案。

【導入案例】有了「漁產品配貨機器人」,預測市價、精準配貨、報表自動化供應鏈,AI客服樣樣行
【109年 應用案例】 有了「漁產品配貨機器人」,預測市價、精準配貨、報表自動化供應鏈,AI客服樣樣行!

遠洋漁貨的新鮮度與品質影響銷售額 鮭魚、石班、土魠、白鯧等食用深海魚類是我國民眾喜歡的魚種,根據2018年漁業統計年報資料顯示,遠洋漁業所帶來的產值高達357億元,佔台灣漁業總產值近40台灣遠洋漁獲主要進口地分別有挪威、蘇格蘭、斯里蘭卡、加拿大、澳洲、印度、紐西蘭、馬爾地夫等地。而三角貿易的部份是由中東、印度、挪威、斯里蘭卡進口,再將冷凍及冰鮮鯊魚貨轉出口到中國大陸。 國內某漁產品進口貿易商之魚貨主要以冰鮮魚貨為大宗,特色在新鮮度及良好的品質,因此魚貨均採空運來台,在機場通關後,直接由交由貨運業者分送全台各大批發魚市的代理商或經銷商。因此每日能否精準預測各漁市交易價格及代銷商銷售額,便成了當日獲利與否的關鍵 目前並無有效預測隔日漁貨價格之方法 漁產品進口貿易商銷售魚貨給批發商的方式分為兩類,一為「代銷」:主要以抽佣方式,代理商從販售收到的貨款中扣除必要費用與佣金後,餘額全交付貿易商;二為「貨品賣斷」:直接將魚貨賣給下游經銷商。兩者中又以代銷方式為最大宗,代銷商於出售魚貨後,當日便會將售價回報給企業,企業主依報回之售價扣除佣金後,定期向代銷商收取貨款。 因此,每日是否能把不同漁貨送往相對高價的漁市銷售,變成了當日獲利與否的關鍵;然這關鍵因素又有賴於是否能精準預測各漁市交易價格及代銷商銷售額。但隨著氣候變遷導致海洋溫度暖化,漁獲量也難以估計的情況下,各地漁市的價格波動不若以往易於掌控。 目前並無有效預測隔日漁貨價格之方法,發貨全由工作人員依經驗法則做決策,難以掌握獲利因素,只能看老天與市場價格的臉色,每日都存在虧損風險。 智能價格預測-漁貨交易利器 微影資訊科技有限公司透過網路爬蟲程式,自動擷取台灣各漁市的交易日之價量資訊及當地氣候觀測站所記錄之氣候資料,再以遞迴神經網路搭配機器學習所建立模型,預測隔日的漁產品交易價格。搭配氣候資料作建模。 AI智能價格預測模型運作流程 漁產品的交易價格來自「漁產品全球資訊網」,其網站記錄台灣各漁市的交易日之價量資訊。氣候資料則是由「觀測資料查詢系統」取得,包含降水、風向、風速、氣壓等指標數值,且以上二網站為公部門建置的開放資料,資料量充分、詳盡且穩定。 此「AI智能價格預測模型」以銷貨占比最大之基隆漁市為目標,將氣候資料與漁市資料合併為模型的「輸入變數」,模型輸出的「預測變數」則為各品種魚貨當日交易價格;針對資料中仍有缺值的當日資料剔除,並以82的比例分成訓練集和測試集來進行模型訓練。根據預測資料再由演算法判斷最佳配貨組合,經由Line BOT語音機器人與代銷商聯絡其所需魚貨品項、規格及數量,透過機器人流程自動化RPA完成人力精簡及效率提升。 AI智能價格預測系統操作流程 「AI智能價格預測模型」有效提升銷售毛利率,未來商機指日可待 貿易商透過導入AI機器人於企業流程系統後,根據預測資料再由演算法判斷最佳配貨組合,經由Line bot語音機器人與代銷商聯繫,完成配貨決策與資訊傳遞,精簡人力及提升銷售毛利率。 透過Line chatbot語音機器人與代銷商聯繫1 透過Line chatbot語音機器人與代銷商聯繫2 透過Line chatbot語音機器人與代銷商聯繫3 透過Line chatbot語音機器人與代銷商聯繫4

【導入案例】「到府洗衣智慧服務系統」,透過AI會員經營,打造智能化洗衣產業
【109年 應用案例】 「到府洗衣智慧服務系統」,透過AI會員經營,打造智能化洗衣產業

方便又好用的洗衣業者哪裡找 當想送洗衣物至乾洗店時,偏偏電話打不通,無法確認今日是否營業該怎麼辦乾洗店APP下載佔空間又卡卡不好用送洗後衣服有問題卻沒有客戶服務系統,產生客訴無法即時處理怎麼辦 根據行政院主計總處統計,全台洗衣業家數在2019年8月已超過6,000家,如何在眾多洗衣業者中脫穎而出,與眾不同,成為一個重大課題。 客訴管理,危險邊界 國內某乾洗品牌連鎖店,於2015年中推出洗衣APP,主打「到府收送洗衣」,目前該APP已有2萬次下載,會員人數大約6,000人,實際每月約300人次使用,在如此便利的服務下,卻收到許多消費者不好的評論,造成營運無法順利擴張,其面臨之問題及改善需求有以下二點: 1消費者缺乏下載APP的誘因及居高不下的成本: 消費者要使用服務需先下載APP,「如何讓消費者願意下載」是APP服務的最大難關。且因採平價、高品質的理念,運用到府收送的服務流程,物流成本已比同業高出許多,又要在推廣APP上付出行銷費用等,在成本居高不下的狀態下,很難達成永續經營的目標。 2人力不足造成的客戶服務問題: 原APP的客戶服務方式是以電子郵件為主,因人力不足所以無法以電話方式服務,故在回應上無法即時滿足消費者需求,且常造成對消費者問題反應的遺漏,進而造成消費者不滿意的情況。 目前多數客訴問題發生於消費者收到衣物後,發現衣物有缺漏、破損或是洗後色偏等狀況,當客服同仁接受到問題後,會先請工廠調出洗衣袋照片,同時請消費者提供收到的衣物照片兩相比對,若確認此問題並非工廠疏失時,會將工廠所提供之照片傳遞給消費者以釐清問題。此客服流程需花費大量人力及時間才能處理完成,實在欠缺服務效率 完善的AI客服體驗 思言科技股份有限公司與AI團隊切斯特國際有限公司合作,透過數據分析與智能客服打造「智慧線上預約服務系統」,利用系統線上預約洗衣服務到府收送,並打造24小時隨時預約及客服回覆服務。 且智能客服採用最新人工智慧深度學習,自動記錄每一次問答紀錄,具備錯誤矯正的能力,並新增客服表單、推播功能、客服機器人及LINE真人客服等服務管道,大幅提升客戶聯繫及確認的方便性,確實縮短客服處理時間,也提供更即時的服務,並透過數據分析打造自動化的AI會員經營術,有效提高消費者回購率及滿意度。 1對1 LINE線上真人客服 到府洗衣智慧服務系統 降低服務使用門檻,有效提升客戶服務滿意度 乾洗品牌連鎖店之服務原先需下載APP才可使用,在導入AI聊天機器人技術後,已轉換成只要加入LINE便可使用。由於服務入口更換,在試營運期間已明顯感受到消費者使用意願提升,訂單及營業額也同步增加。 未來將擴大推廣,除在網路下關鍵字廣告外,也會在門市請人員進行推廣,並已規劃「舊會員邀新朋友得優惠」之行銷活動。且已將本系統應用至餐飲業,未來將會持續將本系統推廣至其他適合之產業。 乾洗品牌連鎖店已規劃將開立「小型門市」,減少檢查訂單及衣服之人力,並已與取物櫃業者聯繫合作,以期多方服務消費者。

【導入案例】緯霖華岩科技聯手研發以AI預測性維護機台,提升血液透析機使用率
【109年 應用案例】 緯霖X華岩科技聯手研發以AI預測性維護機台,提升血液透析機使用率

台灣洗腎率 世界第一保持洗腎機運作正常是降低風險第一要件 根據美國腎臟登錄系統(USRDS)最新年報公佈全球尿毒症排行,台灣洗腎率是世界第一,2018年急、慢性腎病患者共花掉健保51378億元,國內洗腎人數更衝破9萬人大關 當腎臟無功能時,除了換腎或以透析方式取代腎臟功能,約九成患者選擇血液透析(俗稱「洗腎」)方式;大多患者須每周三次,每次4-5小時至特定醫療場所治療(血液透析中心,俗稱「洗腎中心」,是一種高風險的醫療行為。 病患在洗腎中心進行血液透析期間,如發生異常事件,不僅直接影響病人的醫療安全及治療品質,尚要耗費醫療資源、人力解決或排除。減少血液透析期間的異常事件,為血液透析中心的主要需求。其中最容易發生兩類異常事件,一為透析設備出狀況,二為患者的併發症。在透析設備方面,血液透析機是血液透析過程中最重要的設備,大部分的技術性狀況,多可歸屬於血液透析機問題。 血液透析機結構複雜,潛在風險和安全隱患多 血液透析機的結構複雜、精密,集水路、電路交錯,整合電子、機械、流體力學、光學等精密的體外循環系統;由於工作時間長,易受熱力及化學腐蝕的影響,造成部件磨損,影響整個透析系統的操作性能,潛在的風險和安全隱患較多。 由於血液透析機發生「異常事件」時,不論輕重,均被動叫修處理,不僅患者需轉至備用床位,等待維修停機期間(約2至3天)床位無法使用,床位可用量減少,造成已預約患者調度困擾。 只要血液透析機發生「異常事件」,就是目前血液透析中心最大的擔憂,故提高血液透析機設備使用率為當務之急 以AI預測性維護提升血液透析機使用率 開發作業流程 透過大數據,運用AI預測架構,以主動式「預測維修方式」取代「故障時才維修處理」的被動方式,減少異常事件的發生,提升血液透析機的可用度,期望降低(解決)血液透析機的異常事件,不僅可減少醫療資源、人力及時間耗費,也提高治療品質,保障患者生命安全。 透過AI預測,血液透析機的維護可分為「預測性維護」及「即時故障診斷」兩種 ,其中「預測性維護」是指每日血液透析機暖機時,依照大數據資料及AI預測模型,提供血液透析機的健康狀態,當檢測到設備參數有不健康趨勢時予以警示提醒。而「即時故障診斷」則是指血液透析期間,依據設備實時狀態、相關參數,透過AI預測模型,進行數據分析,判斷設備是否需要預測性維護;當血液透析機有狀況時,即可立即判斷故障因素,並即時排除非重大異常事件。 解決方案圖 以創新服務模式,推廣至全台或亞洲區的血液透析中心 AI預測模型維護能夠降低血液透析期間的異常事件,優化現場資源,提升可用血液透析床數,同時提供患者更進一步的安全保障。對「病患」可減少人為疏失產生的異常事件造成損傷及痛苦;對「醫護同仁」可提升簡易處理異常事件的能力,增加工作滿意度及品質;對「院方」則能提升醫療品質,增加醫療滿意度,節省醫療成本,避免醫療糾紛的產生。 「提高血液透析設備可用度」,對血液透析中心而言非常重要,以AI預測性維護為一創新服務模式,可推廣至全台或亞洲區量多的血液透析中心,也可整合個別血液透析的狀況,包含:後端維修、派工及零件庫存等,規劃雲端服務模式的新營運模式。

【導入案例】「AI智慧辨色及成本最佳化控管系統」,自動辨色,突破傳統調色模式,大幅降低成本、提升良率
【109年 應用案例】 「AI智慧辨色及成本最佳化控管系統」,自動辨色,突破傳統調色模式,大幅降低成本、提升良率!

調配新色彩,只能仰賴老師傅的經驗 漆料產業所謂的「電腦配色」,僅為從「現有色」中挑選再進行配色,若遇到「新色」實則無法調出對應的漆料,皆仰賴老師傅的經驗,因此遇到新色時皆要重頭調配,耗費了許多人力與時間,且每個師傅因調色習慣不同,所配出來的結果雖相同,但成本卻差異很大 傳統塗料工廠面臨轉型的危機三部曲 一、缺乏配色標準規範 一般傳統塗料廠生產新色時,會透過「分光測色儀」量測出樣本色之LAB值後,再由調漆師傅根據過往經驗調配出該色漆料,調配完成後再利用儀器檢測LAB值與C、H波長,而此過程並無完整的系統與資料庫紀錄,亦無一套配色標準規範。 二、生產成本難以控管 塗料廠生產許多不同材質及功能之色料,而漆料成本會隨使用的「色母材質」不同而有所差異,即使母件色號相同,色母使用比例不同,成本也會不同,而調漆師傅在調配漆料時,並無一套配色標準規範,導致難以控管生產成本。 三、調色時程冗長與人員訓練不易 在儀器無法取代人工配色之情況下,調漆師傅的培訓須經過多年調漆配色之經驗累積,並熟稔色彩學,對於色相、飽和度、明亮度皆須有基本瞭解,且在調漆時,若無基本參考配色值,必須花費大量時間反覆調配,造成時間成本損失。 建置「AI智慧辨色及成本最佳化控管系統」 塗料廠透過庫點子文創資訊產業有限公司與朝陽科技大學資工系進行產學合作,結合朝陽科大之AI研究能量,共同開發「AI智慧辨色及成本最佳化控管系統」,建置「漆料色號」及「色母材質成本」資料庫,透過資料探勘方法,分析最佳化配色及最佳化成本配方,調漆師傅可參考系統分析之配方進行配色,調漆完成後再將配方輸入系統,反饋至基本資料庫,利用「類神經網路模型」做系統深度學習,建立調色標準化系統,進行成本管控及資料蒐集,以解決塗料廠目前面臨的困境。 在系統建置前期,由庫點子進行塗料廠系統需求之規劃,並建立系統架構與系統資料庫,而後與朝陽科大共同進行資料探勘、類神經網路應用模型功能建置與導入。 系統建置完成後,由庫點子協助塗料廠進行系統測試及修正,待修正與測試無誤後再導入系統,並進行系統使用教育訓練,確保系統正確使用。 系統畫面示意圖 導入系統前後差異 拓展漆業新市場,看見漆業新榮景 此「AI智慧辨色及成本最佳化控管系統」蒐集調漆師傅之調色配方,建立漆料色母配方資料庫,並紀錄該色號之成本,再藉由深度學習功能,搭配分光測色儀,利用每筆數據,分析出最佳化調色配方,以利塗料廠掌控調漆配色之成本,並藉由系統推薦最佳化調色配方,提高調漆速度,增加產值。 未來可產生之效益包含:因產品良率提高,故可減少客訴、增加顧客滿意度;突破傳統調色模式,優化企業形象;提高調漆效率,並可將剩餘時間投入教育訓練,提升人員專業能力;並可共同拓展漆業新市場與學習新應用技術,推廣至其他塗料業者使用,提升整體產業競爭力,看見漆業新榮景

 【導入案例】「凱比同學機器人」有個AI腦,不再答非所問
【109年 應用案例】 「凱比同學機器人」有個AI腦,不再答非所問!

智慧家庭勢不可擋 近年來「智慧居家裝置」崛起,科技大廠除了推出不同產品之外,也帶動語音助理、聊天機器人Chatbot 、陪伴機器人的熱潮,而「語音購物」市場將成為零售業下一個潮流。根據調研機構Juniper Research調查也顯示,到了2023年基於聊天機器人的交易市場規模,將從2018年的73億美元激增至1,120億美元 國內某知名家用機器人製造服務商,提供自行開發設計的教育與陪伴服務機器人,「凱比同學機器人」為其主力產品,但因跟使用者的語音對話能力仍有不足,當消費者覺得機器人不夠聰明,就容易玩膩而被棄置在一旁,長期也會影響其他消費者購買意願。 Hello凱比同學,你聽得懂我在說什麼嗎 經過調查發現,很多凱比同學機器人用戶特別喜歡跟機器人對話或聊天,聊天範圍很廣,但語音聊天對話若單純使用Google或Microsoft雲端平台開發,開發成本不低,用戶使用語音對話服務時,Google是以服務量計價,系統運營成本高,且運營成本是動態變動的,因此對於系統成本管控造成很大困擾。 另一方面,家用機器人製造服務商因已投入大量資源發展凱比同學機器人硬體、軟體、數位內容等服務,自行再開發自然語言對話及語意理解技術,也必須耗費大量人力且速度慢。因資源有限,希望尋求第三方解決方案以提升機器人對話服務的能力與開發效率。 網際智慧自主研發之iboai語音助理對話大腦平台與凱比同學整合 從「對牛彈琴」到「我知道你很難過」的轉變關鍵 網際智慧股份有限公司為台灣知名的人工智慧自然語言理解技術服務公司,產品包含自然輸入法、TTS語音引擎、iboai語音助理對話大腦平台。其中iboai語音助理對話大腦平台,已經應用於智慧音箱、火車高鐵語音助理App,甚至企業用的中華航空公司的員工優待機票系統等。機器人製造服務商發現iboai語音助理對話大腦平台可以很快的補上機器人製造服務商自有AI服務對話技能發展速度的不足,增加更多的對話內容與技能,提供上下文關聯對話服務,使凱比同學在短時間內讓用戶有感變聰明。 服務架構 本案也進一步應用中央研究院資訊研究所最新Principle-based原則導向之語意理解引擎技術,達到深度自然語言處理及理解,並對其進行意圖與實體分析,生成互動對話邏輯,進行連續對話。所以也補強凱比同學機器人基礎社交溝通能力、增強AI對話技能數量,也從原先凱比同學機器人對話只能一問一答回覆就結束,進階為具備「多輪對話」與「上下文關聯對話」的能力,使機器人對答更人性化。同時,凱比同學機器人的開發時間上減少了許多,明顯且有效地大幅降低並控制雲端服務維護管理成本。 服務架構1 AI凱比成為你無所不在的好夥伴 目前市面上眾多的機器人與智慧音箱等語音助理,大都僅能提供一問一答即結束的對話服務,本案採用之iboai語音助理對話大腦平台最大的差異是具備「上下文關聯理解的多輪對話互動」能力,也是台灣唯一能支援在本地端或雲端服務的AI語音助理對話大腦平台。 iboai語音助理對話大腦平台也是支援Level 3Level 5最高等級的對話技能模版數量最多的平台(請參考httpswwwiboaiai-level),可以支援生活類(基礎社交、天氣、新聞、股價)、交通類(台鐵、高鐵、航班)、行銷客服類(FAQ回答、提升購買率)、企業管理類(預約時間、訂會議室、請假考勤、資料查詢)、電商類(出貨進度、退換貨)、IoT控制類等等,透過AI技能模版可以支援大量的企業服務應用,讓企業在短時間設計專屬的語音助理或AI Chatbot為顧客服務,可以應用到LINE, Facebook Messenger、網站、App、IoT裝置等。 本案iboai語音助理對話大腦平台採取iboai inside策略,強調自己的定位是Enabler,協助企業服務升級AI,希望也能幫助現有Chatbot廠商、App開發商、商用軟體商、資訊硬體商、系統整合商、IoT設備商,升級原有的產品與服務具備人工智慧自然語言理解對話的能力,一起為廣大企業提供新一代的人工智慧AI智能機器人服務。

【導入案例】AI加值「香蕉契約合作管理作業系統」,有效提升香蕉外銷產值
【109年 應用案例】 AI加值「香蕉契約合作管理作業系統」,有效提升香蕉外銷產值!

香蕉產業面臨外國低價衝擊 我國香蕉產業近年來受到菲律賓與厄瓜多低價衝擊,銷日數量逐年下滑,已不復當年台灣香蕉外銷日本之黃金時期。 香蕉價格組成之結構,在青蕉階段各國差異不大,投入之肥料與所收穫之重量各國都無明顯差距。但國際香蕉報價,菲律賓一箱約在美金11元,但台灣香蕉每箱則多在美金22元左右。究其原因,乃在於香蕉採收後之「集貨場規模投入資本與產出」之效率,國內農地破碎而零散,因而大幅度拉高了後期商品的成本,也因而限制了外銷的出口動能。 此外,氣候變遷對於我國舊有外銷香蕉之南部產地也造成影響。冬天不冷,夏季降雨週期改變,導致產出之香蕉生理特性受到影響,果徑急遽增大超過外銷規格,造成集貨場處理時每單位的合格品成本增加;或是含水量過多導致口感失去歷史味道,造成市場願意購買的價錢下滑,在成本上升與售價下降的壓力下,更相對的擠壓了台灣香蕉的商品價值與生存。 種植環境差異性無法維持香蕉外銷品質的穩定度 雲林縣某鄉果菜生產合作社,原為國內內銷香蕉之集貨場,所在田區位於雲林縣,該區原本並非台灣外銷香蕉之產區,自2017年,台農發股份有限公司在進行田間調查時,意外發現雲林縣所產之香蕉品質與南部地區相比較為穩定,農民組織也更為緊密,能夠利用水稻田與香蕉田輪作之方式減少黃葉病發生,有效維持產量。 香蕉出口 然而雲林縣的果菜生產合作社並無外銷經驗,因此台農發逐步導入日本相關品規,與農民議定出貨之果指大小、果徑寬度、果軸切口與裝箱方式等。期能逐步建立起我國在中部地區的香蕉外銷中心,然而雲林產區的氣候因素與南部截然不同。目前我國外銷香蕉的相關經驗,多是按照高雄與屏東之經驗來訂立,並無考慮到產區北移後,氣候對於香蕉生長之影響,因此目前集貨場在處理規格品的時候,淘汰的部分仍多,間或造成農民爭議。 農業風險控管數據服務,發展香蕉品規量能波動預測模式 台農發股份有限公司既有之集貨場對契作香蕉農戶包裝分類品檢機制,收集之數據資料與悠由數據應用股份有限公司配合,運用資料科學研究方法,透過研究規劃、資料蒐集擷取、資料清洗、特徵萃取、資料融合、資料分析演算法建立、分析結果、模板開發、專家會議討論等步驟建立分析應用流程。 以「集貨場對香蕉契作戶包裝既有分類品規數據」為核心,將相關數據包含:集貨場每批進貨之貨櫃編號、產地、香蕉數量、每箱果把以及果指數據、瑕疵品抽驗紀錄及內部收購價格與各採購商價格等,透過香蕉契約合作管理作業系統,介接資料決策分析系統及API,提供果菜生產合作社上述分析數據,以利進行後續判斷。 悠由數據擷取與蒐集香蕉契作戶產地之歷年氣象環境資料、公開批發市場的產地價格及香蕉生理模式等數據,結合台農發的分類品規數據,建立「香蕉品規量能波動預測」演算機制,並將分析預測結果回饋至香蕉契約合作作業管理機制。 視覺化採收時程分析 藉由香蕉不同品規量能波動預測分析結果,提供集貨場作為提早預警及市場風險控管之決策參考,並進一步對通路端進行供貨調節,解決集貨場收購所面臨的產能與品規不穩定的問題。 果菜合作社X台農發X悠由數據應用緊密合作,創造三贏 本次成功將產地與台農發和悠由數據三者結成緊密之合作關係。農民以往對於貿易商常有猜疑,貿易商對於農民亦無掌控力,產地往往發生對立的情況,因此未能針對品質進行循環性的改進。這次的結盟,能夠讓通路端的要求,對照產地實際出貨的品規波動,並且用數字化的方式呈現,讓農民也能夠對自己的出貨品質有客觀的認知,進而願意換位思考理解貿易商的難處而進行配合。 香蕉契作管理創新模式 台農發與悠由數據的香蕉契作管理系統,能夠提供一個平台,讓作物的生理結合氣候預測而得到預判資料,對於台農發經營之其他品項,如:鳳梨、美生菜、紅蘿蔔、鳳梨釋迦等,都具有極大的啟發。 未來只要輔導農民參與產銷履歷系統,即能透過地籍資料對接到本契作系統中,有助於產銷履歷制度推行。此系統未來台農發也考慮進行商業化購置。

【導入案例】【文鼎木刻思打造AI造字助手】傳統鑄字行文化傳承現曙光
【109年 應用案例】 文鼎X木刻思 打造AI造字助手 傳統鑄字行文化傳承現曙光

全台僅存的鑄字行文化傳承曝危機 國內某傳統鑄字行為台灣僅剩一家「仍在營運」的鑄字行,有種使命感,希望把台灣長久以來美麗的鉛字活版技術,長久傳承下去。但即使想要繼續鑄字,現存的模具已經歷超過40年反覆鑄造,用來鑄鉛字的「銅模」紛紛損毀。店中高聳的鉛字牆,正面臨時間侵蝕的困境。 每一枚「銅模」可以用來生產一萬枚鉛字,因此被稱為「鉛字之母」。如果銅模的字跡模糊,鑄出來的鉛字也會模糊,印刷之後就會出現部首殘缺、筆劃參差的現象。 在台灣5070年代,用來鑄字的「正楷」銅模,負擔傳播文明的重要責任。 正因銅模崩毀狀況嚴重,鑄字行老闆於2008年發起「字體銅模修復計畫」,與一群熱情參與的志工,首先進行「正楷」銅模字體的修復。三年中各種討論、工坊如火如荼,每週不間斷地討論,似乎銅模復刻之日即在眼前。然而這樂觀的前景,卻發生了意想不到的危機,最終被迫暫停,因為每個人修復的字個性迥異,雖然優美,看起來卻不像是同一套字型helliphellip 銅模字體修復師的「共性」養成不易 曠日廢時的「字體銅模修復計畫」 經歷2008年的失敗,對鑄字行是巨大打擊,因為不能採用這批字型,而覺有愧於志工們的熱情付出且最重要的銅模仍持續損毀中,尤其是店內最具價值的「正楷」銅模,每多鑄一個字、就又破損一點,讓日星焦急不已 銅模損壞從「缺角」開始,逐漸碎裂,終至崩壞 為了趕在銅模完全損毀之前至少保存「字體現貌」,鑄字行於2016年重啟修復計畫在幾位重要志工和Justfont字型團隊的協助下,先將受損最嚴重的「正楷」初號鉛字、部分「宋體」一、二號鉛字先行掃描、保存,待資源到位時,可將「掃描圖檔」轉換「字型檔」,再以電腦進行精修。之後由60歲的老闆一人,緩慢地以一天5個字的速度,修復日星12萬餘枚字型。 有鑑於人力修復的腳步遠遠比不上銅模磨損的速度,鑄字行透過更嚴謹的測試徵選,把3至4位有志長期協助修復的人才聚集起來。除重新進行字型教育訓練之外,也增加「書法」課程培訓。最重要的,為了養成修字的統一標準,這幾位修復師必須接連數月、數年的同步修字,並且每天就修字成果進行檢討,以便減低誤差,趨於一致。期望讓3位修復師一起工作,每天5個字進行長期修復;加上前置訓練,25年內將有望為繁體漢字重建完整的「正楷」4500字初號字型helliphellip 算算看一位修字師傅,需要幾個日子,才能把所有字修完 文鼎科技神助攻,打造AI造字助手 文鼎透過全球領先的漢字造字技術和工具來協助鑄字行,更透過工業局的AI智慧應用服務發展環境推動計畫促成資服業者AI加值轉型計畫,與AI新創獲獎廠商木刻思合作,研發融入AI技術,提升造字生產力,達到縮短開發時間與降低成本的目的。 文鼎從早期每個字都要字型設計師一筆一畫從頭開始造,進化到可以利用既有的字根組字,預組出完整的字。但此初步預組的字,可能筆畫重疊厲害,空間與粗細不佳,還需要設計師花許多時間調修,才能產出可用的字型產品。而透過AI加值模組後,系統可學習設計師部分已調修過的字型風格,自動調整剩餘字的架構、筆劃粗細等,最後再由設計師花較少的時間來確認品質與小幅修改,即能完成可用的字型產品,大幅降造字的時間成本。 導入文鼎加值AI造字系統流程-2之1(導入AI工程技術) 文鼎科技以全球字型、跨平台字型技術服務為核心,提供全球各大製造商、系統商、政府單位各種字型解決方案,以過去開發新字體為例,完成一套萬字的字型需耗時一整年,經濟部工業局輔導文鼎科技與AI新創公司木刻思合作,透過AI學習字型風格,只需完成5,000字,即可自動生成其他5,000個未造字型,再進行品質確認與調修,讓設計師花更少時間便能完成整套字體,大幅提升5成工作效率未來亦將持續優化造字模組,讓AI完成9成以上字型設計,加速新創字型生產速度。 導入文鼎加值AI造字系統流程-2之2(導入文鼎造字平台) 文鼎科技字型創新受到各界採用,如第30屆金曲獎運用字型進行舞台視覺設計、蔡英文總統競選團隊也採用平台字型做為總統大選文宣,於2019年透過AI加值轉變營運模式,首年創造1,500萬元營收,預計5年內提升營收至1億8千萬元以上。 智慧字型設計服務平台 以AI輔助造字降低字型設計門檻,未來可以轉化為「智慧字型設計服務平台」,提供設計師自創字型,也可服務企業字型設計,幫助設計師達到原本無法以個人完成的整套字型開發,也能在專業的造字領域,達成設計與開發的分工,並成為字型代工成功的第一步,對於字型的設計和應用將有重大影響。 且透過AI加值的iFontCloud文鼎雲字庫改變了原本的營運模式,從僅限於文鼎科技內部設計師進行字型設計,打破原有客群限制,與外部設計師進行合作,建立並活絡造字產業圈內的生態系。 AI加值造字流程產出的字型產品:文鼎雲端平台字庫管理工具 文鼎科技吳福生總經理表示:工業局輔導參與AI加值計畫的實證成效,自2019年起每年持續投入600萬,至2023年累計投入3,000萬於AI技術研發,文鼎規劃下一階段將轉化為「智慧字型設計服務平台」,把iFontCloud文鼎雲字庫開放給所有熱愛文字的民眾,每個人都可以透過平台創造個人風格字型,並可應用在各領域,預計將創造更大商機。 iFontCloud-AI加值造字流程產出的字型產品,在文鼎雲端平台上銷售

這是一張圖片。 This is a picture.
【109年 應用案例】 運用深度學習的AI檢測系統,只要0.5秒就能對不規則多邊形體瑕疵做出檢測!

傳統製造業採人工目視檢測產品,品質良率缺乏穩定性 傳統製造業所生產的產品,「品質良率的優劣」是至關重要的議題,也是客戶業務要求的決定因素。近年來雖已有許多AOI視覺檢測輔助系統,但在自動化導入檢測系統時,仍有多項限制條件無法克服。 例如:少量多樣的產品外觀、無法標準化的不規則多邊形產品尺寸、因光線不同角度暈射之玻璃或金屬產品等,不易以AOI視覺檢測來輔助產品良率的過濾,所以仍有許多傳統製造業採用人工目視檢測產品的品管流水線。 人工檢測耗力耗時,國外解決方案昂貴 國內某模型新創製作公司,因常有客製化少量多樣的產品需要製造,雖有國外進口百萬級模具設備,但在產品外觀品質檢測的部份仍多用人工目視檢測,每位員工的測試標準不一,且為了正確完整的檢視產品的外觀,每個人所花費檢視的時間也不容易控制,往往同一個產品需要反覆檢視才能確保品質標準之要求,相當耗力耗時,也易受外界環境影響。 模型公司雖曾評估擬改採國外的AOI視覺檢測設備,但一組設備的價格不菲,又只能檢測部份型式的產品參數,且無學習功能以達到多樣化檢測的目標,故仍只能被動維持原方案helliphellip 客製化解決方案,大幅提升檢測效率與節省人工成本 為了降低人工作業的誤判率及操作成本,進而提升公司產品競爭力,模型公司尋求五百戶科技有限公司協助,期望透過客製服務,以Deep Learning人工智慧技術導入,改善傳統AOI視覺檢測系統的缺點,增加可用視覺檢測系統之產品面向種類,更精準地提升視覺檢測產品的準確性。 五百戶科技在國立中央大學創新AI研究中心的協助下,依據模型公司提供的五種瑕疵條件定義,如:刮痕、毛屑、白斑、損傷破裂與烤漆不均勻等狀態,先蒐集訓練集資料,再手動加工複製瑕疵條件到產品的其他位置與角度,再接著運用程式產生不同角度、光線變化下的瑕疵圖檔,並進行瑕疵標記。 並使用不同演算法所需的訓練集程式方法,如:VGG、RestNet、Inception、DenseNet、Xception、SqueezeNet、對目標的遷徙學習、分類問題Faster_Rcnn、SSD、Yolo、Mask_Rcnn等物件辨識演算法後,經過精確率與速度的綜合考量下,進而選擇了SSD作為主要核心測試檢驗用的演算法。 再產出該演算法所需要之訓練集格式內容,做為比對模型使用;繼而使用不同的AI框架,如:tensorflow、keras等,都做了實際的驗證測試,並產出驗證測試報告,最後調整出每種產品檢驗時的最佳應用參數,確保檢測準確率達平均95,檢測時間也由5秒減低至平均05秒。 模型公司原製作流程僅於人工檢測完成後,批次加蓋QC合格印章,或挑出有瑕疵之產品。導入此檢測系統後,原流程不變,但加速了人工判斷的時間,並且在過程中錄影存檔作紀錄,若有瑕疵品便會出現紅色警示並記錄成照片,該件商品即被排入瑕疵待檢區,人工檢測後若為合格品即可往下檢測下一產品,大幅提升檢測效率與節省人工成本 低成本、高效能的AI檢測新選擇 以機器取代人力的視覺檢測技術,在少量多樣訂單生產、急單和勞動人口短缺情況下,扮演越來越重要的角色。相對國外昂貴的檢測方案,國內能提供相對便宜且客製化之方案,無論是購置成本或檢測效能,都吸引更多業者躍躍欲試,將能有效提升製造業者生產品質之良率,進而提升競爭力。

筆資訊
總筆數:69, 共8頁